Skip to content

VisionEye View Mapping d'objets à l'aide de Ultralytics YOLOv8 🚀

Qu'est-ce que la cartographie d'objets VisionEye ?

Ultralytics YOLOv8 VisionEye permet aux ordinateurs d'identifier et de pointer des objets, en simulant la précision d'observation de l'œil humain. Cette fonctionnalité permet aux ordinateurs de discerner et de se concentrer sur des objets spécifiques, tout comme l'œil humain observe les détails d'un point de vue particulier.

Échantillons

VisionEye View VisionEye View avec suivi des objets
VisionEye View Object Mapping (cartographie d'objets) Ă  l'aide de Ultralytics YOLOv8 VisionEye View Object Mapping with Object Tracking using Ultralytics YOLOv8
VisionEye View Object Mapping (cartographie d'objets) Ă  l'aide de Ultralytics YOLOv8 VisionEye View Object Mapping with Object Tracking using Ultralytics YOLOv8

VisionEye Object Mapping (cartographie d'objets) Ă  l'aide de YOLOv8

import cv2
from ultralytics import YOLO
from ultralytics.utils.plotting import colors, Annotator

model = YOLO("yolov8n.pt")
names = model.model.names
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter('visioneye-pinpoint.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h))

center_point = (-10, h)

while True:
    ret, im0 = cap.read()
    if not ret:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    results = model.predict(im0)
    boxes = results[0].boxes.xyxy.cpu()
    clss = results[0].boxes.cls.cpu().tolist()

    annotator = Annotator(im0, line_width=2)

    for box, cls in zip(boxes, clss):
        annotator.box_label(box, label=names[int(cls)], color=colors(int(cls)))
        annotator.visioneye(box, center_point)

    out.write(im0)
    cv2.imshow("visioneye-pinpoint", im0)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

out.release()
cap.release()
cv2.destroyAllWindows()
import cv2
from ultralytics import YOLO
from ultralytics.utils.plotting import colors, Annotator

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter('visioneye-pinpoint.avi', cv2.VideoWriter_fourcc(*'MJPG'), fps, (w, h))

center_point = (-10, h)

while True:
    ret, im0 = cap.read()
    if not ret:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    annotator = Annotator(im0, line_width=2)

    results = model.track(im0, persist=True)
    boxes = results[0].boxes.xyxy.cpu()

    if results[0].boxes.id is not None:
        track_ids = results[0].boxes.id.int().cpu().tolist()

        for box, track_id in zip(boxes, track_ids):
            annotator.box_label(box, label=str(track_id), color=colors(int(track_id)))
            annotator.visioneye(box, center_point)

    out.write(im0)
    cv2.imshow("visioneye-pinpoint", im0)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

out.release()
cap.release()
cv2.destroyAllWindows()

visioneye Arguments

Nom Type DĂ©faut Description
color tuple (235, 219, 11) Couleur du centroĂŻde de la ligne et de l'objet
pin_color tuple (255, 0, 255) VisionEye pinpoint color
thickness int 2 Épaisseur de la ligne du point de repère à l'objet
pins_radius int 10 Point de repère et centroïde de l'objet rayon du cercle du point de repère

Note

Pour toute demande de renseignements, n'hésite pas à poster tes questions dans la section des problèmes deUltralytics ou dans la section de discussion mentionnée ci-dessous.



Créé le 2023-12-18, Mis à jour le 2024-01-15
Auteurs : glenn-jocher (5), chr043416@gmail.com (1)

Commentaires