Skip to content

Ultralytics Application iOS : Détection d'objets en temps réel avec les modèles YOLO

Ultralytics Image de prévisualisation du HUB

L'application iOS Ultralytics est un outil puissant qui te permet d'exécuter les modèles YOLO directement sur ton iPhone ou ton iPad pour la détection d'objets en temps réel. Cette appli utilise le moteur neuronal d'Apple et Core ML pour l'optimisation et l'accélération des modèles, ce qui permet une détection rapide et efficace des objets.



Regarde : DĂ©marrer avec l'application Ultralytics HUB (IOS et Android)

Quantification et accélération

Pour obtenir des performances en temps réel sur ton appareil iOS, les modèles YOLO sont quantifiés avec une précision FP16 ou INT8. La quantification est un processus qui réduit la précision numérique du modèle weights and biases, réduisant ainsi la taille du modèle et la quantité de calcul nécessaire. Cela permet d'accélérer les temps d'inférence sans affecter de manière significative la précision du modèle.

Quantification FP16

La quantification FP16 (ou demi-précision) convertit les nombres à virgule flottante de 32 bits du modèle en nombres à virgule flottante de 16 bits. Cela permet de réduire de moitié la taille du modèle et d'accélérer le processus d'inférence, tout en maintenant un bon équilibre entre précision et performance.

INT8 Quantification

La quantification INT8 (ou entier 8 bits) réduit encore la taille du modèle et les besoins de calcul en convertissant ses nombres à virgule flottante de 32 bits en entiers de 8 bits. Cette méthode de quantification peut entraîner une accélération significative, mais elle peut conduire à une légère réduction de la précision.

Moteur neuronal Apple

L'Apple Neural Engine (ANE) est un composant matériel dédié intégré aux puces Apple de la série A et de la série M. Il est conçu pour accélérer les tâches d'apprentissage automatique, en particulier pour les réseaux neuronaux, ce qui permet une exécution plus rapide et plus efficace de tes modèles YOLO .

En combinant les modèles quantifiés de YOLO avec le moteur neuronal d'Apple, l'application iOS Ultralytics permet de détecter des objets en temps réel sur ton appareil iOS sans faire de compromis sur la précision ou les performances.

Année de sortie Nom de l'iPhone Nom du chipset Taille du nœud ANE TOPs
2017 iPhone X A11 Bionic 10 nm 0.6
2018 iPhone XS A12 Bionic 7 nm 5
2019 iPhone 11 A13 Bionic 7 nm 6
2020 iPhone 12 A14 Bionic 5 nm 11
2021 iPhone 13 A15 Bionic 5 nm 15.8
2022 iPhone 14 A16 Bionic 4 nm 17.0

Attention, cette liste ne comprend que les modèles d'iPhone à partir de 2017, et les valeurs des TOP ANE sont approximatives.

DĂ©marrer avec l'application iOS Ultralytics

Pour commencer Ă  utiliser l'application iOS Ultralytics , suis les Ă©tapes suivantes :

  1. Télécharge l'application Ultralytics sur l'App Store.

  2. Lance l'appli sur ton appareil iOS et connecte-toi avec ton compte Ultralytics . Si tu n'as pas encore de compte, crée-en un ici.

  3. Une fois connecté, tu verras une liste de tes modèles formés sur YOLO . Sélectionne un modèle à utiliser pour la détection des objets.

  4. Accorde à l'appli la permission d'accéder à l'appareil photo de ton appareil.

  5. Pointe la caméra de ton appareil vers les objets que tu veux détecter. L'appli affichera les boîtes de délimitation et les étiquettes de classe en temps réel au fur et à mesure qu'elle détecte les objets.

  6. Explore les paramètres de l'appli pour ajuster le seuil de détection, activer ou désactiver des classes d'objets spécifiques, et plus encore.

Avec l'application iOS Ultralytics , tu peux maintenant exploiter la puissance des modèles YOLO pour la détection d'objets en temps réel sur ton iPhone ou ton iPad, alimentés par le moteur neuronal d'Apple et optimisés avec la quantification FP16 ou INT8.



Created 2023-11-12, Updated 2024-06-22
Authors: glenn-jocher (7), sergiuwaxmann (2), RizwanMunawar (1)

Commentaires