Skip to content

Référence pour ultralytics/models/yolo/world/train_world.py

Note

Ce fichier est disponible à l'adresse https://github.com/ultralytics/ ultralytics/blob/main/ ultralytics/models/ yolo/world/train_world .py. Si tu repères un problème, aide à le corriger en contribuant à une Pull Request 🛠️. Merci 🙏 !



ultralytics.models.yolo.world.train_world.WorldTrainerFromScratch

Bases : WorldTrainer

Une classe qui étend la classe WorldTrainer pour former un modèle mondial à partir de zéro sur un ensemble de données ouvertes.

Exemple
from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
from ultralytics import YOLOWorld

data = dict(
    train=dict(
        yolo_data=["Objects365.yaml"],
        grounding_data=[
            dict(
                img_path="../datasets/flickr30k/images",
                json_file="../datasets/flickr30k/final_flickr_separateGT_train.json",
            ),
            dict(
                img_path="../datasets/GQA/images",
                json_file="../datasets/GQA/final_mixed_train_no_coco.json",
            ),
        ],
    ),
    val=dict(yolo_data=["lvis.yaml"]),
)

model = YOLOWorld("yolov8s-worldv2.yaml")
model.train(data=data, trainer=WorldTrainerFromScratch)
Code source dans ultralytics/models/yolo/world/train_world.py
class WorldTrainerFromScratch(WorldTrainer):
    """
    A class extending the WorldTrainer class for training a world model from scratch on open-set dataset.

    Example:
        ```python
        from ultralytics.models.yolo.world.train_world import WorldTrainerFromScratch
        from ultralytics import YOLOWorld

        data = dict(
            train=dict(
                yolo_data=["Objects365.yaml"],
                grounding_data=[
                    dict(
                        img_path="../datasets/flickr30k/images",
                        json_file="../datasets/flickr30k/final_flickr_separateGT_train.json",
                    ),
                    dict(
                        img_path="../datasets/GQA/images",
                        json_file="../datasets/GQA/final_mixed_train_no_coco.json",
                    ),
                ],
            ),
            val=dict(yolo_data=["lvis.yaml"]),
        )

        model = YOLOWorld("yolov8s-worldv2.yaml")
        model.train(data=data, trainer=WorldTrainerFromScratch)
        ```
    """

    def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
        """Initialize a WorldTrainer object with given arguments."""
        if overrides is None:
            overrides = {}
        super().__init__(cfg, overrides, _callbacks)

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        Build YOLO Dataset.

        Args:
            img_path (List[str] | str): Path to the folder containing images.
            mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
            batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
        if mode == "train":
            dataset = [
                build_yolo_dataset(self.args, im_path, batch, self.data, stride=gs, multi_modal=True)
                if isinstance(im_path, str)
                else build_grounding(self.args, im_path["img_path"], im_path["json_file"], batch, stride=gs)
                for im_path in img_path
            ]
            return YOLOConcatDataset(dataset) if len(dataset) > 1 else dataset[0]
        else:
            return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataset(self):
        """
        Get train, val path from data dict if it exists.

        Returns None if data format is not recognized.
        """
        final_data = dict()
        data_yaml = self.args.data
        assert data_yaml.get("train", False)  # object365.yaml
        assert data_yaml.get("val", False)  # lvis.yaml
        data = {k: [check_det_dataset(d) for d in v.get("yolo_data", [])] for k, v in data_yaml.items()}
        assert len(data["val"]) == 1, f"Only support validating on 1 dataset for now, but got {len(data['val'])}."
        val_split = "minival" if "lvis" in data["val"][0]["val"] else "val"
        for d in data["val"]:
            if d.get("minival") is None:  # for lvis dataset
                continue
            d["minival"] = str(d["path"] / d["minival"])
        for s in ["train", "val"]:
            final_data[s] = [d["train" if s == "train" else val_split] for d in data[s]]
            # save grounding data if there's one
            grounding_data = data_yaml[s].get("grounding_data")
            if grounding_data is None:
                continue
            grounding_data = [grounding_data] if not isinstance(grounding_data, list) else grounding_data
            for g in grounding_data:
                assert isinstance(g, dict), f"Grounding data should be provided in dict format, but got {type(g)}"
            final_data[s] += grounding_data
        # NOTE: to make training work properly, set `nc` and `names`
        final_data["nc"] = data["val"][0]["nc"]
        final_data["names"] = data["val"][0]["names"]
        self.data = final_data
        return final_data["train"], final_data["val"][0]

    def plot_training_labels(self):
        """DO NOT plot labels."""
        pass

    def final_eval(self):
        """Performs final evaluation and validation for object detection YOLO-World model."""
        val = self.args.data["val"]["yolo_data"][0]
        self.validator.args.data = val
        self.validator.args.split = "minival" if isinstance(val, str) and "lvis" in val else "val"
        return super().final_eval()

__init__(cfg=DEFAULT_CFG, overrides=None, _callbacks=None)

Initialise un objet WorldTrainer avec les arguments donnés.

Code source dans ultralytics/models/yolo/world/train_world.py
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
    """Initialize a WorldTrainer object with given arguments."""
    if overrides is None:
        overrides = {}
    super().__init__(cfg, overrides, _callbacks)

build_dataset(img_path, mode='train', batch=None)

Construis l'ensemble de données YOLO .

Paramètres :

Nom Type Description DĂ©faut
img_path List[str] | str

Chemin d'accès au dossier contenant les images.

requis
mode str

train ou val les utilisateurs peuvent personnaliser différentes augmentations pour chaque mode.

'train'
batch int

Taille des lots, c'est pour rect. La valeur par défaut est Aucun.

None
Code source dans ultralytics/models/yolo/world/train_world.py
def build_dataset(self, img_path, mode="train", batch=None):
    """
    Build YOLO Dataset.

    Args:
        img_path (List[str] | str): Path to the folder containing images.
        mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
        batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
    """
    gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
    if mode == "train":
        dataset = [
            build_yolo_dataset(self.args, im_path, batch, self.data, stride=gs, multi_modal=True)
            if isinstance(im_path, str)
            else build_grounding(self.args, im_path["img_path"], im_path["json_file"], batch, stride=gs)
            for im_path in img_path
        ]
        return YOLOConcatDataset(dataset) if len(dataset) > 1 else dataset[0]
    else:
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

final_eval()

Effectue l'évaluation finale et la validation de la détection d'objets YOLO-Modèle mondial.

Code source dans ultralytics/models/yolo/world/train_world.py
def final_eval(self):
    """Performs final evaluation and validation for object detection YOLO-World model."""
    val = self.args.data["val"]["yolo_data"][0]
    self.validator.args.data = val
    self.validator.args.split = "minival" if isinstance(val, str) and "lvis" in val else "val"
    return super().final_eval()

get_dataset()

Récupère le train, le chemin de val de la dictée de données si elle existe.

Renvoie Aucun si le format des données n'est pas reconnu.

Code source dans ultralytics/models/yolo/world/train_world.py
def get_dataset(self):
    """
    Get train, val path from data dict if it exists.

    Returns None if data format is not recognized.
    """
    final_data = dict()
    data_yaml = self.args.data
    assert data_yaml.get("train", False)  # object365.yaml
    assert data_yaml.get("val", False)  # lvis.yaml
    data = {k: [check_det_dataset(d) for d in v.get("yolo_data", [])] for k, v in data_yaml.items()}
    assert len(data["val"]) == 1, f"Only support validating on 1 dataset for now, but got {len(data['val'])}."
    val_split = "minival" if "lvis" in data["val"][0]["val"] else "val"
    for d in data["val"]:
        if d.get("minival") is None:  # for lvis dataset
            continue
        d["minival"] = str(d["path"] / d["minival"])
    for s in ["train", "val"]:
        final_data[s] = [d["train" if s == "train" else val_split] for d in data[s]]
        # save grounding data if there's one
        grounding_data = data_yaml[s].get("grounding_data")
        if grounding_data is None:
            continue
        grounding_data = [grounding_data] if not isinstance(grounding_data, list) else grounding_data
        for g in grounding_data:
            assert isinstance(g, dict), f"Grounding data should be provided in dict format, but got {type(g)}"
        final_data[s] += grounding_data
    # NOTE: to make training work properly, set `nc` and `names`
    final_data["nc"] = data["val"][0]["nc"]
    final_data["names"] = data["val"][0]["names"]
    self.data = final_data
    return final_data["train"], final_data["val"][0]

plot_training_labels()

Ne trace pas d'Ă©tiquettes.

Code source dans ultralytics/models/yolo/world/train_world.py
def plot_training_labels(self):
    """DO NOT plot labels."""
    pass





Créé le 2024-03-31, Mis à jour le 2024-05-25
Auteurs : glenn-jocher (2), Burhan-Q (1), Laughing-q (1)