์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ

MobileSAM ๋กœ๊ณ 

๋ชจ๋ฐ”์ผ ์„ธ๊ทธ๋จผํŠธ ์• ๋‹ˆ์”ฝ (MobileSAM)

MobileSAM ๋…ผ๋ฌธ์€ ํ˜„์žฌ arXiv์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

CPU ์—์„œ ์‹คํ–‰๋˜๋Š” MobileSAM ๋ฐ๋ชจ๋Š” ์ด ๋ฐ๋ชจ ๋งํฌ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Mac i5 CPU ์—์„œ์˜ ์„ฑ๋Šฅ์€ ์•ฝ 3์ดˆ๊ฐ€ ์†Œ์š”๋ฉ๋‹ˆ๋‹ค. Hugging Face ๋ฐ๋ชจ์—์„œ๋Š” ์ธํ„ฐํŽ˜์ด์Šค์™€ ์ €์„ฑ๋Šฅ CPU๋กœ ์ธํ•ด ์‘๋‹ต ์†๋„๊ฐ€ ๋Š๋ ค์ง€์ง€๋งŒ ์—ฌ์ „ํžˆ ํšจ๊ณผ์ ์œผ๋กœ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค.



Watch: Ultralytics | ๋‹จ๊ณ„๋ณ„ ๊ฐ€์ด๋“œ ๐ŸŽ‰๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ถ”๋ก ์„ ์‹คํ–‰ํ•˜๋Š” ๋ฐฉ๋ฒ• MobileSAM

MobileSAM ์ ‘์ง€( SAM ) , ์• ๋‹ˆ๋ผ๋ฒจ๋ง, 3D ์„ธ๊ทธ๋จผํŠธ ์• ๋‹ˆ์”ฝ ๋“ฑ ๋‹ค์–‘ํ•œ ํ”„๋กœ์ ํŠธ์—์„œ ๊ตฌํ˜„๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

MobileSAM ๋Š” 100,000๊ฐœ์˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ(์›๋ณธ ์ด๋ฏธ์ง€์˜ 1%)๋กœ ๊ตฌ์„ฑ๋œ ๋‹จ์ผ GPU ์— ๋Œ€ํ•ด ํ•˜๋ฃจ๋„ ์ฑ„ ๊ฑธ๋ฆฌ์ง€ ์•Š๊ณ  ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ํ›ˆ๋ จ์— ๋Œ€ํ•œ ์ฝ”๋“œ๋Š” ํ–ฅํ›„ ๊ณต๊ฐœ๋  ์˜ˆ์ •์ž…๋‹ˆ๋‹ค.

์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ๋ชจ๋ธ, ์ง€์›๋˜๋Š” ์ž‘์—… ๋ฐ ์ž‘๋™ ๋ชจ๋“œ

์ด ํ‘œ์—๋Š” ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ๋ชจ๋ธ๊ณผ ํ•จ๊ป˜ ํŠน์ • ์‚ฌ์ „ ํ•™์Šต๋œ ๊ฐ€์ค‘์น˜, ์ง€์›๋˜๋Š” ์ž‘์—…, ์ถ”๋ก , ๊ฒ€์ฆ, ํ•™์Šต ๋ฐ ๋‚ด๋ณด๋‚ด๊ธฐ์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์ž‘๋™ ๋ชจ๋“œ์™€์˜ ํ˜ธํ™˜์„ฑ์ด ํ‘œ์‹œ๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ง€์›๋˜๋Š” ๋ชจ๋“œ์˜ ๊ฒฝ์šฐ โœ… ์ด๋ชจํ‹ฐ์ฝ˜, ์ง€์›๋˜์ง€ ์•Š๋Š” ๋ชจ๋“œ์˜ ๊ฒฝ์šฐ โŒ ์ด๋ชจํ‹ฐ์ฝ˜์œผ๋กœ ํ‘œ์‹œ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

๋ชจ๋ธ ์œ ํ˜• ์‚ฌ์ „ ํ•™์Šต๋œ ๊ฐ€์ค‘์น˜ ์ง€์›๋˜๋Š” ์ž‘์—… ์ถ”๋ก  ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ ๊ต์œก ๋‚ด๋ณด๋‚ด๊ธฐ
MobileSAM mobile_sam.pt ์ธ์Šคํ„ด์Šค ์„ธ๋ถ„ํ™” โœ… โŒ โŒ โŒ

SAM ์—์„œ MobileSAM

MobileSAM ์€ ์›๋ณธ SAM ๊ณผ ๋™์ผํ•œ ํŒŒ์ดํ”„๋ผ์ธ์„ ์œ ์ง€ํ•˜๋ฏ€๋กœ ์›๋ณธ์˜ ์ „์ฒ˜๋ฆฌ, ํ›„์ฒ˜๋ฆฌ ๋ฐ ๊ธฐํƒ€ ๋ชจ๋“  ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ํ†ตํ•ฉํ–ˆ์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ํ˜„์žฌ ์›๋ณธ SAM ์„ ์‚ฌ์šฉ ์ค‘์ธ ์‚ฌ์šฉ์ž๋Š” ์ตœ์†Œํ•œ์˜ ๋…ธ๋ ฅ์œผ๋กœ MobileSAM ์œผ๋กœ ์ „ํ™˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

MobileSAM ๋Š” ์ด๋ฏธ์ง€ ์ธ์ฝ”๋”์˜ ๋ณ€๊ฒฝ์„ ์ œ์™ธํ•˜๊ณ ๋Š” ๋™์ผํ•œ ํŒŒ์ดํ”„๋ผ์ธ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๊ธฐ์กด SAM ๊ณผ ๋น„์Šทํ•œ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ, ๊ธฐ์กด์˜ ๋ฌด๊ฑฐ์šด ViT-H ์ธ์ฝ”๋”(632M)๋ฅผ ๋” ์ž‘์€ Tiny-ViT(5M)๋กœ ๊ต์ฒดํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‹จ์ผ GPU, MobileSAM ์—์„œ ์ด๋ฏธ์ง€๋‹น ์•ฝ 12ms๋กœ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค: ์ด๋ฏธ์ง€ ์ธ์ฝ”๋”์—์„œ 8ms, ๋งˆ์Šคํฌ ๋””์ฝ”๋”์—์„œ 4ms์ž…๋‹ˆ๋‹ค.

๋‹ค์Œ ํ‘œ๋Š” ViT ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ์ธ์ฝ”๋”๋ฅผ ๋น„๊ตํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค:

์ด๋ฏธ์ง€ ์ธ์ฝ”๋” ์›๋ณธ SAM MobileSAM
๋งค๊ฐœ๋ณ€์ˆ˜ 611M 5M
์†๋„ 452ms 8ms

์›๋ณธ SAM ๋ฐ MobileSAM ๋ชจ๋‘ ๋™์ผํ•œ ํ”„๋กฌํ”„ํŠธ ์•ˆ๋‚ด ๋งˆ์Šคํฌ ๋””์ฝ”๋”๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค:

๋งˆ์Šคํฌ ๋””์ฝ”๋” ์›๋ณธ SAM MobileSAM
๋งค๊ฐœ๋ณ€์ˆ˜ 3.876M 3.876M
์†๋„ 4ms 4ms

๋‹ค์Œ์€ ์ „์ฒด ํŒŒ์ดํ”„๋ผ์ธ์„ ๋น„๊ตํ•œ ๊ฒƒ์ž…๋‹ˆ๋‹ค:

์ „์ฒด ํŒŒ์ดํ”„๋ผ์ธ(Enc+Dec) ์›๋ณธ SAM MobileSAM
๋งค๊ฐœ๋ณ€์ˆ˜ 615M 9.66M
์†๋„ 456ms 12ms

MobileSAM ๋ฐ ์›๋ณธ SAM ์˜ ์„ฑ๋Šฅ์€ ์ ๊ณผ ์ƒ์ž๋ฅผ ๋ชจ๋‘ ํ”„๋กฌํ”„ํŠธ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ์‹œ์—ฐํ•ฉ๋‹ˆ๋‹ค.

ํฌ์ธํŠธ๊ฐ€ ์žˆ๋Š” ์ด๋ฏธ์ง€๋ฅผ ํ”„๋กฌํ”„ํŠธ๋กœ ํ‘œ์‹œ

์ƒ์ž๋ฅผ ํ”„๋กฌํ”„ํŠธ๋กœ ์‚ฌ์šฉํ•˜๋Š” ์ด๋ฏธ์ง€

์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๊ฐ–์ถ˜ MobileSAM ์€ ํ˜„์žฌ FastSAM ๋ณด๋‹ค ์•ฝ 5๋ฐฐ ์ž‘๊ณ  7๋ฐฐ ๋น ๋ฆ…๋‹ˆ๋‹ค. ์ž์„ธํ•œ ๋‚ด์šฉ์€ MobileSAM ํ”„๋กœ์ ํŠธ ํŽ˜์ด์ง€์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ํ…Œ์ŠคํŠธ MobileSAM Ultralytics

๊ธฐ์กด SAM ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ Ultralytics ์—์„œ ํฌ์ธํŠธ ๋ฐ ๋ฐ•์Šค ํ”„๋กฌํ”„ํŠธ ๋ชจ๋“œ๋ฅผ ํฌํ•จํ•œ ๊ฐ„๋‹จํ•œ ํ…Œ์ŠคํŠธ ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ

์—ฌ๊ธฐ์—์„œ ๋ชจ๋ธ์„ ๋‹ค์šด๋กœ๋“œํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

ํฌ์ธํŠธ ํ”„๋กฌํ”„ํŠธ

์˜ˆ

from ultralytics import SAM

# Load the model
model = SAM("mobile_sam.pt")

# Predict a segment based on a single point prompt
model.predict("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1])

# Predict multiple segments based on multiple points prompt
model.predict("ultralytics/assets/zidane.jpg", points=[[400, 370], [900, 370]], labels=[1, 1])

# Predict a segment based on multiple points prompt per object
model.predict("ultralytics/assets/zidane.jpg", points=[[[400, 370], [900, 370]]], labels=[[1, 1]])

# Predict a segment using both positive and negative prompts.
model.predict("ultralytics/assets/zidane.jpg", points=[[[400, 370], [900, 370]]], labels=[[1, 0]])

์ƒ์ž ํ”„๋กฌํ”„ํŠธ

์˜ˆ

from ultralytics import SAM

# Load the model
model = SAM("mobile_sam.pt")

# Predict a segment based on a single point prompt
model.predict("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1])

# Predict mutiple segments based on multiple points prompt
model.predict("ultralytics/assets/zidane.jpg", points=[[400, 370], [900, 370]], labels=[1, 1])

# Predict a segment based on multiple points prompt per object
model.predict("ultralytics/assets/zidane.jpg", points=[[[400, 370], [900, 370]]], labels=[[1, 1]])

# Predict a segment using both positive and negative prompts.
model.predict("ultralytics/assets/zidane.jpg", points=[[[400, 370], [900, 370]]], labels=[[1, 0]])

์šฐ๋ฆฌ๋Š” ๊ตฌํ˜„ํ–ˆ์Šต๋‹ˆ๋‹ค MobileSAM ๊ทธ๋ฆฌ๊ณ  SAM ๋™์ผํ•œ API๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ž์„ธํ•œ ์‚ฌ์šฉ ์ •๋ณด๋Š” SAM ํŽ˜์ด์ง€.

Automatically Build Segmentation Datasets Leveraging a Detection Model

To automatically annotate your dataset using the Ultralytics framework, utilize the auto_annotate function as demonstrated below:

์˜ˆ

from ultralytics.data.annotator import auto_annotate

auto_annotate(data="path/to/images", det_model="yolo11x.pt", sam_model="mobile_sam.pt")
์ธ์ˆ˜ ์œ ํ˜• ๊ธฐ๋ณธ๊ฐ’ ์„ค๋ช…
data str required Path to directory containing target images/videos for annotation or segmentation.
det_model str "yolo11x.pt" YOLO detection model path for initial object detection.
sam_model str "sam2_b.pt" SAM2 model path for segmentation (supports t/s/b/l variants and SAM2.1) and mobile_sam models.
device str "" Computation device (e.g., 'cuda:0', 'cpu', or '' for automatic device detection).
conf float 0.25 YOLO detection confidence threshold for filtering weak detections.
iou float 0.45 IoU threshold for Non-Maximum Suppression to filter overlapping boxes.
imgsz int 640 Input size for resizing images (must be multiple of 32).
max_det int 300 Maximum number of detections per image for memory efficiency.
classes list[int] None List of class indices to detect (e.g., [0, 1] for person & bicycle).
output_dir str None Save directory for annotations (defaults to './labels' relative to data path).

์ธ์šฉ ๋ฐ ๊ฐ์‚ฌ

์—ฐ๊ตฌ ๋˜๋Š” ๊ฐœ๋ฐœ ์ž‘์—…์— MobileSAM ์ด ์œ ์šฉํ•˜๋‹ค๊ณ  ์ƒ๊ฐ๋˜๋ฉด ์ €ํฌ ๋…ผ๋ฌธ์„ ์ธ์šฉํ•ด ์ฃผ์„ธ์š”:

@article{mobile_sam,
  title={Faster Segment Anything: Towards Lightweight SAM for Mobile Applications},
  author={Zhang, Chaoning and Han, Dongshen and Qiao, Yu and Kim, Jung Uk and Bae, Sung Ho and Lee, Seungkyu and Hong, Choong Seon},
  journal={arXiv preprint arXiv:2306.14289},
  year={2023}
}

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ

MobileSAM ์ด๋ž€ ๋ฌด์—‡์ด๋ฉฐ ๊ธฐ์กด SAM ๋ชจ๋ธ๊ณผ ์–ด๋–ป๊ฒŒ ๋‹ค๋ฅธ๊ฐ€์š”?

MobileSAM ๋Š” ๋ชจ๋ฐ”์ผ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์šฉ์œผ๋กœ ์„ค๊ณ„๋œ ๊ฐ€๋ณ๊ณ  ๋น ๋ฅธ ์ด๋ฏธ์ง€ ๋ถ„ํ•  ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ์ด ๋ชจ๋ธ์€ ๊ธฐ์กด SAM ๊ณผ ๋™์ผํ•œ ํŒŒ์ดํ”„๋ผ์ธ์„ ์œ ์ง€ํ•˜์ง€๋งŒ ๋ฌด๊ฑฐ์šด ViT-H ์ธ์ฝ”๋”(632M ๋งค๊ฐœ๋ณ€์ˆ˜)๋ฅผ ๋” ์ž‘์€ Tiny-ViT ์ธ์ฝ”๋”(5M ๋งค๊ฐœ๋ณ€์ˆ˜)๋กœ ๋Œ€์ฒดํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ณ€๊ฒฝ์œผ๋กœ ์ธํ•ด MobileSAM ์€ ๊ธฐ์กด SAM ๋ณด๋‹ค ์•ฝ 5๋ฐฐ ์ž‘๊ณ  7๋ฐฐ ๋นจ๋ผ์กŒ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, MobileSAM ์€ ์ด๋ฏธ์ง€๋‹น ์•ฝ 12ms๋กœ ์ž‘๋™ํ•˜๋Š” ๋ฐ˜๋ฉด, ๊ธฐ์กด SAM ์€ 456ms๋กœ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์–‘ํ•œ ํ”„๋กœ์ ํŠธ์—์„œ MobileSAM ๊ตฌํ˜„์— ๋Œ€ํ•ด ์ž์„ธํžˆ ์•Œ์•„๋ณด๋ ค๋ฉด ์—ฌ๊ธฐ๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

Ultralytics ์„ ์‚ฌ์šฉํ•˜์—ฌ MobileSAM ํ…Œ์ŠคํŠธํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•˜๋‚˜์š”?

Ultralytics ์—์„œ MobileSAM ํ…Œ์ŠคํŠธ๋Š” ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํฌ์ธํŠธ ๋ฐ ๋ฐ•์Šค ํ”„๋กฌํ”„ํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์„ธ๊ทธ๋จผํŠธ๋ฅผ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ํฌ์ธํŠธ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์˜ˆ์ œ์ž…๋‹ˆ๋‹ค:

from ultralytics import SAM

# Load the model
model = SAM("mobile_sam.pt")

# Predict a segment based on a point prompt
model.predict("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1])

์ž์„ธํ•œ ๋‚ด์šฉ์€ ํ…Œ์ŠคํŠธ MobileSAM ์„น์…˜์„ ์ฐธ์กฐํ•˜์„ธ์š”.

๋ชจ๋ฐ”์ผ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์— MobileSAM ์„ ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋Š” ์ด์œ ๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”?

MobileSAM ๋Š” ๊ฐ€๋ฒผ์šด ์•„ํ‚คํ…์ฒ˜์™€ ๋น ๋ฅธ ์ถ”๋ก  ์†๋„๋กœ ์ธํ•ด ๋ชจ๋ฐ”์ผ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์— ์ด์ƒ์ ์ž…๋‹ˆ๋‹ค. ๊ธฐ์กด SAM ๊ณผ ๋น„๊ตํ•˜๋ฉด MobileSAM ์€ ์•ฝ 5๋ฐฐ ์ž‘๊ณ  7๋ฐฐ ๋น ๋ฅด๋ฏ€๋กœ ์ปดํ“จํŒ… ๋ฆฌ์†Œ์Šค๊ฐ€ ์ œํ•œ๋œ ํ™˜๊ฒฝ์— ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํšจ์œจ์„ฑ ๋•๋ถ„์— ๋ชจ๋ฐ”์ผ ๋””๋ฐ”์ด์Šค์—์„œ ์ƒ๋‹นํ•œ ์ง€์—ฐ ์‹œ๊ฐ„ ์—†์ด ์‹ค์‹œ๊ฐ„ ์ด๋ฏธ์ง€ ๋ถ„ํ• ์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ MobileSAM ์˜ ์ถ”๋ก ๊ณผ ๊ฐ™์€ ๋ชจ๋ธ์€ ๋ชจ๋ฐ”์ผ ์„ฑ๋Šฅ์— ์ตœ์ ํ™”๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

MobileSAM ๊ต์œก์€ ์–ด๋–ป๊ฒŒ ์ง„ํ–‰๋˜์—ˆ์œผ๋ฉฐ, ๊ต์œก ์ฝ”๋“œ๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‚˜์š”?

MobileSAM ๋Š” ์›๋ณธ ์ด๋ฏธ์ง€์˜ 1%์— ํ•ด๋‹นํ•˜๋Š” 10๋งŒ ๊ฐœ์˜ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ•˜๋ฃจ๋„ ์•ˆ ๋˜๋Š” ์‹œ๊ฐ„ ๋‚ด์— ๋‹จ์ผ GPU ๋กœ ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ํŠธ๋ ˆ์ด๋‹ ์ฝ”๋“œ๋Š” ํ–ฅํ›„ ์ œ๊ณต๋  ์˜ˆ์ •์ด์ง€๋งŒ, ํ˜„์žฌ๋Š” MobileSAM GitHub ๋ฆฌํฌ์ง€ํ† ๋ฆฌ์—์„œ MobileSAM ์˜ ๋‹ค๋ฅธ ์ธก๋ฉด์„ ์‚ดํŽด๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ฆฌํฌ์ง€ํ† ๋ฆฌ์—๋Š” ๋‹ค์–‘ํ•œ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์œ„ํ•œ ์‚ฌ์ „ ํ•™์Šต๋œ ๊ฐ€์ค‘์น˜์™€ ๊ตฌํ˜„ ์„ธ๋ถ€ ์ •๋ณด๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

MobileSAM ์˜ ์ฃผ์š” ์‚ฌ์šฉ ์‚ฌ๋ก€๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”?

MobileSAM ๋Š” ๋ชจ๋ฐ”์ผ ํ™˜๊ฒฝ์—์„œ ๋น ๋ฅด๊ณ  ํšจ์œจ์ ์ธ ์ด๋ฏธ์ง€ ๋ถ„ํ• ์„ ์œ„ํ•ด ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ฃผ์š” ์‚ฌ์šฉ ์‚ฌ๋ก€๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

  • ๋ชจ๋ฐ”์ผ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์œ„ํ•œ ์‹ค์‹œ๊ฐ„ ๊ฐ์ฒด ๊ฐ์ง€ ๋ฐ ์„ธ๋ถ„ํ™”.
  • ์ปดํ“จํŒ… ๋ฆฌ์†Œ์Šค๊ฐ€ ์ œํ•œ๋œ ๊ธฐ๊ธฐ์—์„œ ์ง€์—ฐ ์‹œ๊ฐ„์ด ์งง์€ ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ.
  • ์ฆ๊ฐ• ํ˜„์‹ค(AR) ๋ฐ ์‹ค์‹œ๊ฐ„ ๋ถ„์„๊ณผ ๊ฐ™์€ ์ž‘์—…์„ ์œ„ํ•ด AI ๊ธฐ๋ฐ˜ ๋ชจ๋ฐ”์ผ ์•ฑ์— ํ†ตํ•ฉํ•ฉ๋‹ˆ๋‹ค.

์ž์„ธํ•œ ์‚ฌ์šฉ ์‚ฌ๋ก€์™€ ์„ฑ๋Šฅ ๋น„๊ต๋Š” SAM ์—์„œ MobileSAM ์œผ๋กœ์˜ ์ ์‘ ์„น์…˜์„ ์ฐธ์กฐํ•˜์„ธ์š”.

๐Ÿ“…1 ๋…„ ์ „ ์ƒ์„ฑ๋จ โœ๏ธ ์—…๋ฐ์ดํŠธ๋จ 18 ์ผ ์ „

๋Œ“๊ธ€