콘텐츠로 이동

Ultralytics YOLOv8 모드

Ultralytics YOLO 생태계 및 통합

서론

Ultralytics YOLOv8는 단순한 객체 탐지 모델이 아닙니다; 데이터 수집에서 모델 트레이닝, 검증, 배포, 실세계 추적에 이르기까지 머신러닝 모델의 전체 생애주기를 커버하기 위해 설계된 다재다능한 프레임워크입니다. 각각의 모드는 특정 목적을 위해 섬세하게 구성되며, 다양한 작업 및 사용 사례에 필요한 유연성과 효율성을 제공합니다.



시청하기: Ultralytics 모드 튜토리얼: 트레이닝, 검증, 예측, 내보내기 및 벤치마킹.

모드 요약

YOLOv8이 지원하는 모드를 이해하는 것은 모델을 최대한 활용하기 위해 필수적입니다:

  • Train 모드: 사용자 맞춤 또는 사전 로드된 데이터셋 위에서 모델을 튜닝합니다.
  • Val 모드: 트레이닝 후 모델 성능을 검증하기 위한 체크포인트.
  • Predict 모드: 실세계 데이터에서 모델의 예측력을 발휘합니다.
  • Export 모드: 다양한 포맷으로 모델을 배포 준비 상태로 만듭니다.
  • Track 모드: 객체 탐지 모델을 실시간 추적 애플리케이션으로 확장합니다.
  • Benchmark 모드: 다양한 배포 환경에서 모델의 속도와 정확도를 분석합니다.

이 포괄적인 가이드는 각 모드에 대한 개요와 실제 인사이트를 제공하여 YOLOv8의 전체 잠재력을 활용할 수 있도록 도와줍니다.

Train

Train 모드는 사용자 맞춤 데이터셋 위에서 YOLOv8 모델을 트레이닝하기 위해 사용됩니다. 이 모드에서는 지정된 데이터셋과 하이퍼파라미터를 사용하여 모델을 트레이닝합니다. 트레이닝 과정에서 모델의 파라미터를 최적화하여 이미지 내 객체의 클래스와 위치를 정확히 예측할 수 있도록 합니다.

Train 예시

Val

Val 모드는 트레이닝된 YOLOv8 모델을 검증하기 위해 사용됩니다. 이 모드에서는 모델을 검증 세트에서 평가하여 정확도 및 일반화 성능을 측정합니다. 이 모드는 모델의 하이퍼파라미터를 조정하고 성능을 개선하는데 사용할 수 있습니다.

Val 예시

Predict

Predict 모드는 트레이닝된 YOLOv8 모델을 사용하여 새 이미지 또는 비디오에서 예측을 수행하기 위해 사용됩니다. 이 모드에서는 체크포인트 파일에서 모델을 로드하고, 사용자가 이미지나 비디오를 제공하여 추론을 수행합니다. 모델은 입력 이미지 또는 비디오에서 객체의 클래스와 위치를 예측합니다.

Predict 예시

Export

Export 모드는 배포를 위해 YOLOv8 모델을 내보낼 수 있는 포맷으로 변환하기 위해 사용됩니다. 이 모드에서는 모델을 다른 소프트웨어 어플리케이션 또는 하드웨어 기기에서 사용할 수 있는 포맷으로 변환합니다. 이 모드는 모델을 생산 환경으로 배포하는데 유용합니다.

Export 예시

Track

Track 모드는 실시간으로 YOLOv8 모델을 사용하여 객체를 추적하기 위해 사용됩니다. 이 모드에서는 체크포인트 파일에서 모델을 로드하고, 사용자가 실시간 비디오 스트림을 제공하여 실시간 객체 추적을 수행합니다. 이 모드는 감시 시스템이나 자율 주행 차량 같은 애플리케이션에 유용합니다.

Track 예시

Benchmark

Benchmark 모드는 YOLOv8의 다양한 내보내기 포맷에 대한 속도와 정확도를 프로파일링하기 위해 사용됩니다. 벤치마크는 내보낸 포맷의 크기, 그리고 객체 탐지, 세분화 및 포즈에 대한 mAP50-95 메트릭 또는 분류에 대한 accuracy_top5 메트릭, 그리고 ONNX, OpenVINO, TensorRT 등 다양한 내보내기 포맷에서의 이미지당 추론 시간을 밀리초로 제공합니다. 이 정보는 속도와 정확도에 대한 특정 사용 사례 요구 사항에 기반하여 최적의 내보내기 포맷을 선택하는 데 도움이 될 수 있습니다.

Benchmark 예시


Created 2023-11-13, Updated 2023-11-25
Authors: glenn-jocher (2)

댓글