Ultralytics ํตํฉ
Welcome to the Ultralytics Integrations page! This page provides an overview of our partnerships with various tools and platforms, designed to streamline your machine learning workflows, enhance dataset management, simplify model training, and facilitate efficient deployment.
Watch: Ultralytics YOLO11 Deployment and Integrations
๋ฐ์ดํฐ ์ธํธ ํตํฉ
- Roboflow: ๊ฐ๋ ฅํ ์ฃผ์, ์ ์ฒ๋ฆฌ ๋ฐ ์ฆ๊ฐ ๊ธฐ๋ฅ์ ์ ๊ณตํ์ฌ Ultralytics ๋ชจ๋ธ์ ๋ํ ์ํํ ๋ฐ์ดํฐ ์ธํธ ๊ด๋ฆฌ๋ฅผ ์ง์ํฉ๋๋ค.
๊ต์ก ํตํฉ
-
์๋ง์กด ์ธ์ด์ง๋ฉ์ด์ปค: Amazon SageMaker๋ฅผ ํ์ฉํ์ฌ Ultralytics ๋ชจ๋ธ์ ํจ์จ์ ์ผ๋ก ๋น๋, ๊ต์ก ๋ฐ ๋ฐฐํฌํ์ฌ ML ์๋ช ์ฃผ๊ธฐ๋ฅผ ์ํ ์ฌ์ธ์ ํ๋ซํผ์ ์ ๊ณตํฉ๋๋ค.
-
ClearML: Ultralytics ML ์ํฌํ๋ก์ฐ ์๋ํ, ์คํ ๋ชจ๋ํฐ๋ง, ํ ํ์ ์ด์ง.
-
Comet ML: ๋จธ์ ๋ฌ๋ ์คํ์ ์ถ์ , ๋น๊ต, ์ต์ ํํ์ฌ Ultralytics ์ผ๋ก ๋ชจ๋ธ ๊ฐ๋ฐ์ ๊ฐํํ์ธ์.
-
DVC: Ultralytics ๋จธ์ ๋ฌ๋ ํ๋ก์ ํธ์ ๋ฒ์ ๊ด๋ฆฌ๋ฅผ ๊ตฌํํ์ฌ ๋ฐ์ดํฐ, ์ฝ๋, ๋ชจ๋ธ์ ํจ๊ณผ์ ์ผ๋ก ๋๊ธฐํํ์ธ์.
-
Google Colab: Google Colab์ ์ฌ์ฉํ์ฌ ํ์ ๋ฐ ๊ณต์ ๋ฅผ ์ง์ํ๋ ํด๋ผ์ฐ๋ ๊ธฐ๋ฐ ํ๊ฒฝ์์ Ultralytics ๋ชจ๋ธ์ ํ์ตํ๊ณ ํ๊ฐํ์ธ์.
-
IBM ์์จx: ์ต์ฒจ๋จ AI ๋๊ตฌ, ์์ฌ์ด ํตํฉ, ๊ณ ๊ธ ๋ชจ๋ธ ๊ด๋ฆฌ ์์คํ ์ผ๋ก Ultralytics ๋ชจ๋ธ์ ํ์ต ๋ฐ ํ๊ฐ๋ฅผ ๊ฐ์ํํ๋ IBM Watsonx์ ๋ฐฉ๋ฒ์ ์์๋ณด์ธ์.
-
์ฃผํผํฐ๋ฉ: JupyterLab์ ๋ํํ ๋ฐ ์ฌ์ฉ์ ์ง์ ๊ฐ๋ฅํ ํ๊ฒฝ์ ์ฌ์ฉํ์ฌ ์ฝ๊ณ ํจ์จ์ ์ผ๋ก Ultralytics ๋ชจ๋ธ์ ํ๋ จํ๊ณ ํ๊ฐํ๋ ๋ฐฉ๋ฒ์ ์์๋ณด์ธ์.
-
Kaggle: ์ฌ์ ์ค์น๋ ๋ผ์ด๋ธ๋ฌ๋ฆฌ, GPU ์ง์, ํ์ ๋ฐ ๊ณต์ ๋ฅผ ์ํ ํ๋ฐํ ์ปค๋ฎค๋ํฐ๊ฐ ์๋ ํด๋ผ์ฐ๋ ๊ธฐ๋ฐ ํ๊ฒฝ์์ Kaggle์ ์ฌ์ฉํ์ฌ Ultralytics ๋ชจ๋ธ์ ๊ต์กํ๊ณ ํ๊ฐํ๋ ๋ฐฉ๋ฒ์ ์ดํด๋ณด์ธ์.
-
MLFlow: ์คํ ๋ฐ ์ฌํ์ฑ์์ ๋ฐฐํฌ์ ์ด๋ฅด๊ธฐ๊น์ง Ultralytics ๋ชจ๋ธ์ ์ ์ฒด ML ์๋ช ์ฃผ๊ธฐ๋ฅผ ๊ฐ์ํํฉ๋๋ค.
-
Neptune: MLOps์ฉ์ผ๋ก ์ค๊ณ๋ ์ด ๋ฉํ๋ฐ์ดํฐ ์ ์ฅ์( Ultralytics )์์ ML ์คํ์ ๋ํ ์ข ํฉ์ ์ธ ๋ก๊ทธ๋ฅผ ์ ์งํ์ธ์.
-
Paperspace Gradient: Paperspace Gradient simplifies working on YOLO11 projects by providing easy-to-use cloud tools for training, testing, and deploying your models quickly.
-
๋ ์ด ํ : ๊ท๋ชจ์ ์๊ด์์ด Ultralytics ๋ชจ๋ธ์ ํ์ดํผํ๋ผ๋ฏธํฐ๋ฅผ ์ต์ ํํ์ธ์.
-
ํ ์๋ณด๋: Ultralytics ML ์ํฌํ๋ก์ฐ๋ฅผ ์๊ฐํํ๊ณ , ๋ชจ๋ธ ๋ฉํธ๋ฆญ์ ๋ชจ๋ํฐ๋งํ๊ณ , ํ ํ์ ์ ์ด์งํ์ธ์.
-
Ultralytics HUB: ์ฌ์ ๊ต์ก์ ๋ฐ์ Ultralytics ๋ชจ๋ธ ์ปค๋ฎค๋ํฐ์ ์ก์ธ์คํ๊ณ ๊ธฐ์ฌํ์ธ์.
-
Weights & Biases (W&B): ์คํ์ ๋ชจ๋ํฐ๋งํ๊ณ , ๋ฉํธ๋ฆญ์ ์๊ฐํํ๊ณ , Ultralytics ํ๋ก์ ํธ์์ ์ฌํ์ฑ๊ณผ ํ์ ์ ์ด์งํ์ธ์.
๋ฐฐํฌ ํตํฉ
-
CoreML: CoreML, developed by Apple, is a framework designed for efficiently integrating machine learning models into applications across iOS, macOS, watchOS, and tvOS, using Apple's hardware for effective and secure model deployment.
-
Gradio ๐ ์ ๊ท: ์ค์๊ฐ ๋ํํ ๊ฐ์ฒด ๊ฐ์ง ๋ฐ๋ชจ๋ฅผ ์ํด Gradio์ ํจ๊ป Ultralytics ๋ชจ๋ธ์ ๋ฐฐํฌํ์ธ์.
-
NCNN: Developed by Tencent, NCNN is an efficient neural network inference framework tailored for mobile devices. It enables direct deployment of AI models into apps, optimizing performance across various mobile platforms.
-
Neural Magic: ์๋ํ ์ธ์ ํ๋ จ(QAT) ๋ฐ ๊ฐ์ง์น๊ธฐ ๊ธฐ๋ฒ์ ํ์ฉํ์ฌ Ultralytics ๋ชจ๋ธ์ ์ต์ ํํ์ฌ ์ฐ์ํ ์ฑ๋ฅ๊ณผ ๋ ๊ฐ๊ฒฐํ ํฌ๊ธฐ๋ฅผ ๊ตฌํํฉ๋๋ค.
-
ONNX: ์์ ๋ง๋ ์คํ ์์ค ํ์ Microsoft ๋ค์ํ ํ๋ ์์ํฌ ๊ฐ์ AI ๋ชจ๋ธ์ ์ฝ๊ฒ ์ ์กํ๊ณ Ultralytics ๋ชจ๋ธ์ ๋ค์์ฑ๊ณผ ๋ฐฐํฌ ์ ์ฐ์ฑ์ ํฅ์์ํค๊ธฐ ์ํด ๋ง๋ ์คํ ์์ค ํ์์ ๋๋ค.
-
OpenVINO: Intel's toolkit for optimizing and deploying computer vision models efficiently across various Intel CPU and GPU platforms.
-
PaddlePaddle: ๋ฐ์ด๋์ ์คํ์์ค ๋ฅ๋ฌ๋ ํ๋ซํผ( PaddlePaddle )์ AI ๋ชจ๋ธ์ ํจ์จ์ ์ธ ๋ฐฐํฌ๋ฅผ ์ง์ํ๊ณ ์ฐ์ ์ ํ๋ฆฌ์ผ์ด์ ์ ํ์ฅ์ฑ์ ์ค์ ์ ๋ก๋๋ค.
-
TF GraphDef: ๊ฐ๋ฐ์ฌ GoogleGraphDef ๋ TensorFlow ์ ๊ณ์ฐ ๊ทธ๋ํ ํํ ํ์์ผ๋ก, ๋ค์ํ ํ๋์จ์ด์์ ๋จธ์ ๋ฌ๋ ๋ชจ๋ธ์ ์ต์ ํํ์ฌ ์คํํ ์ ์์ต๋๋ค.
-
TF SavedModel: Developed by Google, TF SavedModel is a universal serialization format for TensorFlow models, enabling easy sharing and deployment across a wide range of platforms, from servers to edge devices.
-
TF.js: ๊ฐ๋ฐ์ Google ์์ ๊ฐ๋ฐํ TF.js๋ ๋ธ๋ผ์ฐ์ ์ Node.js์์ ๋จธ์ ๋ฌ๋์ ์ฉ์ดํ๊ฒ ํ๊ธฐ ์ํด ์๋ฐ์คํฌ๋ฆฝํธ ๊ธฐ๋ฐ์ ML ๋ชจ๋ธ ๋ฐฐํฌ๋ฅผ ์ง์ํฉ๋๋ค.
-
TFLite: ๊ฐ๋ฐ์ฌ GoogleTFLite๋ ๋ชจ๋ฐ์ผ ๋ฐ ์ฃ์ง ๋๋ฐ์ด์ค์ ๋จธ์ ๋ฌ๋ ๋ชจ๋ธ์ ๋ฐฐํฌํ๊ธฐ ์ํ ๊ฒฝ๋ ํ๋ ์์ํฌ๋ก, ์ต์ํ์ ๋ฉ๋ชจ๋ฆฌ ๊ณต๊ฐ์ผ๋ก ๋น ๋ฅด๊ณ ํจ์จ์ ์ธ ์ถ๋ก ์ ๋ณด์ฅํฉ๋๋ค.
-
TFLite Edge TPU: Developed by Google for optimizing TensorFlow Lite models on Edge TPUs, this model format ensures high-speed, efficient edge computing.
-
TensorRT: Developed by NVIDIA, this high-performance deep learning inference framework and model format optimizes AI models for accelerated speed and efficiency on NVIDIA GPUs, ensuring streamlined deployment.
-
TorchScript: ํ๋ ์์ํฌ์ ์ผ๋ถ๋ก ๊ฐ๋ฐ๋ PyTorch ํ๋ ์์ํฌ์ ์ผ๋ถ๋ก ๊ฐ๋ฐ๋ TorchScript ๋ Python ์ข ์์ฑ ์์ด ๋ค์ํ ํ๋ก๋์ ํ๊ฒฝ์์ ๋จธ์ ๋ฌ๋ ๋ชจ๋ธ์ ํจ์จ์ ์ผ๋ก ์คํํ๊ณ ๋ฐฐํฌํ ์ ์๊ฒ ํด์ค๋๋ค.
-
VS Code: An extension for VS Code that provides code snippets for accelerating development workflows with Ultralytics and also for anyone looking for examples to help learn or get started with Ultralytics.
๋ด๋ณด๋ด๊ธฐ ํ์
๋ํ ๋ค์ํ ํ๊ฒฝ์ ๋ฐฐํฌํ ์ ์๋๋ก ๋ค์ํ ๋ชจ๋ธ ๋ด๋ณด๋ด๊ธฐ ํ์์ ์ง์ํฉ๋๋ค. ์ฌ์ฉ ๊ฐ๋ฅํ ํ์์ ๋ค์๊ณผ ๊ฐ์ต๋๋ค:
ํ์ | format ์ธ์ |
๋ชจ๋ธ | ๋ฉํ๋ฐ์ดํฐ | ์ธ์ |
---|---|---|---|---|
PyTorch | - | yolo11n.pt |
โ | - |
TorchScript | torchscript |
yolo11n.torchscript |
โ | imgsz , optimize , batch |
ONNX | onnx |
yolo11n.onnx |
โ | imgsz , half , dynamic , simplify , opset , batch |
OpenVINO | openvino |
yolo11n_openvino_model/ |
โ | imgsz , half , int8 , batch |
TensorRT | engine |
yolo11n.engine |
โ | imgsz , half , dynamic , simplify , workspace , int8 , batch |
CoreML | coreml |
yolo11n.mlpackage |
โ | imgsz , half , int8 , nms , batch |
TF SavedModel | saved_model |
yolo11n_saved_model/ |
โ | imgsz , keras , int8 , batch |
TF GraphDef | pb |
yolo11n.pb |
โ | imgsz , batch |
TF Lite | tflite |
yolo11n.tflite |
โ | imgsz , half , int8 , batch |
TF Edge TPU | edgetpu |
yolo11n_edgetpu.tflite |
โ | imgsz |
TF.js | tfjs |
yolo11n_web_model/ |
โ | imgsz , half , int8 , batch |
PaddlePaddle | paddle |
yolo11n_paddle_model/ |
โ | imgsz , batch |
NCNN | ncnn |
yolo11n_ncnn_model/ |
โ | imgsz , half , batch |
๊ฐ ํตํฉ์ ๋ํ ์์ธํ ๋ด์ฉ๊ณผ ํตํฉ์ ์ต๋ํ ํ์ฉํ๋ ๋ฐฉ๋ฒ์ ์์๋ณด๋ ค๋ฉด ๋งํฌ๋ฅผ ์ฐธ์กฐํ์ธ์( Ultralytics). ์ ์ฒด ๋ณด๊ธฐ export
์ธ๋ถ ์ ๋ณด์์ ๋ด๋ณด๋ด๊ธฐ ํ์ด์ง๋ก ์ด๋ํฉ๋๋ค.
ํตํฉ์ ๊ธฐ์ฌํ๊ธฐ
์ปค๋ฎค๋ํฐ๊ฐ Ultralytics YOLO ์ ๋ค๋ฅธ ๊ธฐ์ , ๋๊ตฌ, ํ๋ซํผ๊ณผ ์ด๋ป๊ฒ ํตํฉํ๋์ง ํญ์ ๊ธฐ๋๋ฉ๋๋ค! YOLO ์ ์๋ก์ด ์์คํ ๊ณผ ์ฑ๊ณต์ ์ผ๋ก ํตํฉํ๊ฑฐ๋ ๊ณต์ ํ ๊ท์คํ ์ธ์ฌ์ดํธ๊ฐ ์๋ค๋ฉด ํตํฉ ๋ฌธ์์ ๊ธฐ์ฌํด ์ฃผ์ธ์.
๊ฐ์ด๋๋ ํํ ๋ฆฌ์ผ์ ์์ฑํ๋ฉด ๋ฌธ์๋ฅผ ํ์ฅํ๊ณ ์ปค๋ฎค๋ํฐ์ ๋์์ด ๋๋ ์ค์ ์ฌ๋ก๋ฅผ ์ ๊ณตํ๋ ๋ฐ ๋์์ ์ค ์ ์์ต๋๋ค. Ultralytics YOLO ์ ์ค์ฌ์ผ๋ก ์ฑ์ฅํ๋ ์ํ๊ณ์ ๊ธฐ์ฌํ ์ ์๋ ํ๋ฅญํ ๋ฐฉ๋ฒ์ ๋๋ค.
๊ธฐ์ฌํ๋ ค๋ฉด ํ ๋ฆฌํ์คํธ(PR) ์ ์ถ ๋ฐฉ๋ฒ์ ๋ํ ์๋ด๋ ๊ธฐ์ฌ ๊ฐ์ด๋๋ฅผ ์ฐธ์กฐํ์ธ์(๐ ๏ธ). ์ฌ๋ฌ๋ถ์ ๊ธฐ์ฌ๋ฅผ ๊ฐ์ ํ ๊ธฐ๋ค๋ฆฌ๊ณ ์์ต๋๋ค!
Ultralytics YOLO ์ํ๊ณ๋ฅผ ๋์ฑ ํ์ฅํ๊ณ ํ๋ถํ ๊ธฐ๋ฅ์ผ๋ก ๋ง๋ค๊ธฐ ์ํด ํ๋ ฅํฉ์๋ค ๐!
์์ฃผ ๋ฌป๋ ์ง๋ฌธ
Ultralytics HUB๋ ๋ฌด์์ด๋ฉฐ, ์ด๋ป๊ฒ ML ์ํฌํ๋ก์ฐ๋ฅผ ๊ฐ์ํํ๋์?
Ultralytics HUB is a cloud-based platform designed to make machine learning (ML) workflows for Ultralytics models seamless and efficient. By using this tool, you can easily upload datasets, train models, perform real-time tracking, and deploy YOLO11 models without needing extensive coding skills. You can explore the key features on the Ultralytics HUB page and get started quickly with our Quickstart guide.
๋ฐ์ดํฐ ์งํฉ ๊ด๋ฆฌ๋ฅผ ์ํด Ultralytics YOLO ๋ชจ๋ธ์ Roboflow ์ ์ด๋ป๊ฒ ํตํฉํ๋์?
Ultralytics YOLO ๋ชจ๋ธ์ Roboflow ์ ํตํฉํ๋ฉด ์ฃผ์, ์ ์ฒ๋ฆฌ ๋ฐ ๋ณด๊ฐ์ ์ํ ๊ฐ๋ ฅํ ๋๊ตฌ๋ฅผ ์ ๊ณตํ์ฌ ๋ฐ์ดํฐ ์ธํธ ๊ด๋ฆฌ๊ฐ ํฅ์๋ฉ๋๋ค. ์์ํ๋ ค๋ฉด ํตํฉ ํ์ด์ง์ Roboflow ํตํฉ ํ์ด์ง์ ๋จ๊ณ๋ฅผ ๋ฐ๋ฅด์ธ์. ์ด ํํธ๋์ญ์ ์ ํํ๊ณ ๊ฐ๋ ฅํ YOLO ๋ชจ๋ธ์ ๊ฐ๋ฐํ๋ ๋ฐ ํ์์ ์ธ ํจ์จ์ ์ธ ๋ฐ์ดํฐ ์ธํธ ์ฒ๋ฆฌ๋ฅผ ๋ณด์ฅํฉ๋๋ค.
MLFlow๋ฅผ ์ฌ์ฉํ์ฌ Ultralytics ๋ชจ๋ธ์ ์ฑ๋ฅ์ ์ถ์ ํ ์ ์๋์?
์, ๊ฐ๋ฅํฉ๋๋ค. MLFlow๋ฅผ Ultralytics ๋ชจ๋ธ๊ณผ ํตํฉํ๋ฉด ์คํ์ ์ถ์ ํ๊ณ ์ฌํ์ฑ์ ๊ฐ์ ํ๋ฉฐ ์ ์ฒด ML ์๋ช ์ฃผ๊ธฐ๋ฅผ ๊ฐ์ํํ ์ ์์ต๋๋ค. ์ด ํตํฉ ์ค์ ์ ๋ํ ์์ธํ ์ง์นจ์ MLFlow ํตํฉ ํ์ด์ง์์ ํ์ธํ ์ ์์ต๋๋ค. ์ด ํตํฉ์ ๋ชจ๋ธ ๋ฉํธ๋ฆญ์ ๋ชจ๋ํฐ๋งํ๊ณ ML ์ํฌํ๋ก๋ฅผ ํจ์จ์ ์ผ๋ก ๊ด๋ฆฌํ๋ ๋ฐ ํนํ ์ ์ฉํฉ๋๋ค.
What are the benefits of using Neural Magic for YOLO11 model optimization?
Neural Magic optimizes YOLO11 models by leveraging techniques like Quantization Aware Training (QAT) and pruning, resulting in highly efficient, smaller models that perform better on resource-limited hardware. Check out the Neural Magic integration page to learn how to implement these optimizations for superior performance and leaner models. This is especially beneficial for deployment on edge devices.
๋ํํ ๋ฐ๋ชจ๋ฅผ ์ํด Gradio์ ํจ๊ป Ultralytics YOLO ๋ชจ๋ธ์ ๋ฐฐํฌํ๋ ค๋ฉด ์ด๋ป๊ฒ ํด์ผ ํ๋์?
To deploy Ultralytics YOLO models with Gradio for interactive object detection demos, you can follow the steps outlined on the Gradio integration page. Gradio allows you to create easy-to-use web interfaces for real-time model inference, making it an excellent tool for showcasing your YOLO model's capabilities in a user-friendly format suitable for both developers and end-users.
์ด๋ฌํ ์ผ๋ฐ์ ์ธ ์ง๋ฌธ์ ํด๊ฒฐํจ์ผ๋ก์จ ์ฌ์ฉ์ ๊ฒฝํ์ ๊ฐ์ ํ๊ณ Ultralytics ์ ํ์ ๊ฐ๋ ฅํ ๊ธฐ๋ฅ์ ๋ํ ๊ท์คํ ํต์ฐฐ๋ ฅ์ ์ ๊ณตํ๊ณ ์ ํฉ๋๋ค. ์ด๋ฌํ FAQ๋ฅผ ํตํฉํ๋ฉด ์ค๋ช ์๋ฅผ ํฅ์์ํฌ ๋ฟ๋ง ์๋๋ผ Ultralytics ์น์ฌ์ดํธ๋ก์ ์ ๊ธฐ์ ์ธ ํธ๋ํฝ์ ๋ ๋ง์ด ์ ๋ํ ์ ์์ต๋๋ค.