Elevating YOLO11 Training: Simplify Your Logging Process with Comet ML
Logging key training details such as parameters, metrics, image predictions, and model checkpoints is essential in machine learningβit keeps your project transparent, your progress measurable, and your results repeatable.
Ultralytics YOLO11 seamlessly integrates with Comet ML, efficiently capturing and optimizing every aspect of your YOLO11 object detection model's training process. In this guide, we'll cover the installation process, Comet ML setup, real-time insights, custom logging, and offline usage, ensuring that your YOLO11 training is thoroughly documented and fine-tuned for outstanding results.
Comet ML
Comet MLμ λ¨Έμ λ¬λ λͺ¨λΈκ³Ό μ€νμ μΆμ , λΉκ΅, μ€λͺ , μ΅μ ννκΈ° μν νλ«νΌμ λλ€. λͺ¨λΈ νλ ¨ μ€μ λ©νΈλ¦, 맀κ°λ³μ, λ―Έλμ΄ λ±μ κΈ°λ‘νκ³ λ―Έμ μΌλ‘ 보기 μ’μ μΉ μΈν°νμ΄μ€λ₯Ό ν΅ν΄ μ€νμ λͺ¨λν°λ§ν μ μμ΅λλ€. Comet MLμ λ°μ΄ν° κ³Όνμκ° λ λΉ λ₯΄κ² λ°λ³΅νκ³ , ν¬λͺ μ±κ³Ό μ¬νμ±μ λμ΄λ©°, νλ‘λμ λͺ¨λΈμ κ°λ°νλ λ° λμμ μ€λλ€.
Harnessing the Power of YOLO11 and Comet ML
By combining Ultralytics YOLO11 with Comet ML, you unlock a range of benefits. These include simplified experiment management, real-time insights for quick adjustments, flexible and tailored logging options, and the ability to log experiments offline when internet access is limited. This integration empowers you to make data-driven decisions, analyze performance metrics, and achieve exceptional results.
μ€μΉ
νμν ν¨ν€μ§λ₯Ό μ€μΉνλ €λ©΄ μ€νν©λλ€:
μ€μΉ
Comet ML ꡬμ±
νμν ν¨ν€μ§λ₯Ό μ€μΉν ν κ°μ νκ³ Comet API ν€λ₯Ό λ°μ ν μ€μ ν΄μΌ ν©λλ€.
κ·Έλ° λ€μ Comet νλ‘μ νΈλ₯Ό μ΄κΈ°νν μ μμ΅λλ€. Comet μμ μλμΌλ‘ API ν€λ₯Ό κ°μ§νκ³ μ€μ μ μ§νν©λλ€.
Google Colab λ ΈνΈλΆμ μ¬μ© μ€μΈ κ²½μ°, μμ μ½λμμ μ΄κΈ°νλ₯Ό μν΄ API ν€λ₯Ό μ λ ₯νλΌλ λ©μμ§κ° νμλ©λλ€.
μ¬μ©λ²
Before diving into the usage instructions, be sure to check out the range of YOLO11 models offered by Ultralytics. This will help you choose the most appropriate model for your project requirements.
μ¬μ©λ²
After running the training code, Comet ML will create an experiment in your Comet workspace to track the run automatically. You will then be provided with a link to view the detailed logging of your YOLO11 model's training process.
Comet automatically logs the following data with no additional configuration: metrics such as mAP and loss, hyperparameters, model checkpoints, interactive confusion matrix, and image bounding box predictions.
Comet ML μκ°νλ₯Ό ν΅ν λͺ¨λΈ μ±λ₯ μ΄ν΄νκΈ°
Let's dive into what you'll see on the Comet ML dashboard once your YOLO11 model begins training. The dashboard is where all the action happens, presenting a range of automatically logged information through visuals and statistics. Here's a quick tour:
μ€ν ν¨λ
The experiment panels section of the Comet ML dashboard organize and present the different runs and their metrics, such as segment mask loss, class loss, precision, and mean average precision.
λ©νΈλ¦
λ©νΈλ¦ μΉμ μμλ μ¬κΈ°μ νμλ κ²μ²λΌ μ μ© μ°½μ νμλλ ν νμμΌλ‘ λ©νΈλ¦μ κ²ν ν μ μλ μ΅μ λ μμ΅λλ€.
Interactive Confusion Matrix
The confusion matrix, found in the Confusion Matrix tab, provides an interactive way to assess the model's classification accuracy. It details the correct and incorrect predictions, allowing you to understand the model's strengths and weaknesses.
μμ€ν λ©νΈλ¦
Comet MLμ μμ€ν λ©νΈλ¦μ κΈ°λ‘νμ¬ νΈλ μ΄λ νλ‘μΈμ€μ λ³λͺ© νμμ νμ νλ λ° λμμ μ€λλ€. μ¬κΈ°μλ GPU μ¬μ©λ₯ , GPU λ©λͺ¨λ¦¬ μ¬μ©λ, CPU μ¬μ©λ₯ λ° RAM μ¬μ©λκ³Ό κ°μ λ©νΈλ¦μ΄ ν¬ν¨λ©λλ€. μ΄λ¬ν μ§νλ λͺ¨λΈ νμ΅ μ€ λ¦¬μμ€ μ¬μ©μ ν¨μ¨μ±μ λͺ¨λν°λ§νλ λ° νμμ μ λλ€.
Comet ML λ‘κΉ μ¬μ©μ μ§μ
Comet MLμ νκ²½ λ³μλ₯Ό μ€μ νμ¬ λ‘κΉ λμμ μ¬μ©μ μ§μ ν μ μλ μ μ°μ±μ μ 곡ν©λλ€. μ΄λ¬ν ꡬμ±μ ν΅ν΄ Comet MLμ νΉμ μꡬ μ¬νκ³Ό μ νΈλμ λ§κ² μ‘°μ ν μ μμ΅λλ€. λ€μμ λͺ κ°μ§ μ μ©ν μ¬μ©μ μ§μ μ΅μ μ λλ€:
μ΄λ―Έμ§ μμΈ‘ λ‘κΉ
μ€ν μ€μ Comet MLμ΄ κΈ°λ‘νλ μ΄λ―Έμ§ μμΈ‘μ μλ₯Ό μ μ΄ν μ μμ΅λλ€. κΈ°λ³Έμ μΌλ‘ Comet MLμ μ ν¨μ± κ²μ¬ μΈνΈμμ 100κ°μ μ΄λ―Έμ§ μμΈ‘μ κΈ°λ‘ν©λλ€. κ·Έλ¬λ μꡬ μ¬νμ λ μ ν©νλλ‘ μ΄ μλ₯Ό λ³κ²½ν μ μμ΅λλ€. μλ₯Ό λ€μ΄ 200κ°μ μ΄λ―Έμ§ μμΈ‘μ κΈ°λ‘νλ €λ©΄ λ€μ μ½λλ₯Ό μ¬μ©ν©λλ€:
μΌκ΄ λ‘κΉ κ°κ²©
Comet MLμ μ¬μ©νλ©΄ μ΄λ―Έμ§ μμΈ‘ λ°°μΉλ₯Ό κΈ°λ‘νλ λΉλλ₯Ό μ§μ ν μ μμ΅λλ€. μ΄λ―Έμ§ μμΈ‘μ COMET_EVAL_BATCH_LOGGING_INTERVAL
νκ²½ λ³μκ° μ΄ λΉλλ₯Ό μ μ΄ν©λλ€. κΈ°λ³Έ μ€μ μ 1λ‘, λͺ¨λ μ ν¨μ± κ²μ¬ λ°°μΉμμ μμΈ‘μ κΈ°λ‘ν©λλ€. μ΄ κ°μ μ‘°μ νμ¬ λ€λ₯Έ κ°κ²©μΌλ‘ μμΈ‘μ κΈ°λ‘ν μ μμ΅λλ€. μλ₯Ό λ€μ΄ 4λ‘ μ€μ νλ©΄ λ€ λ²μ§Έ λ°°μΉλ§λ€ μμΈ‘μ κΈ°λ‘ν©λλ€.
νΌλ 맀νΈλ¦μ€ λ‘κΉ λΉνμ±ν
In some cases, you may not want to log the confusion matrix from your validation set after every epoch. You can disable this feature by setting the COMET_EVAL_LOG_CONFUSION_MATRIX
νκ²½ λ³μλ₯Ό "false"λ‘ μ€μ ν©λλ€. νΌλ νλ ¬μ νλ ¨μ΄ μλ£λ ν ν λ²λ§ κΈ°λ‘λ©λλ€.
μ€νλΌμΈ λ‘κΉ
μΈν°λ· μ μμ΄ μ νλλ μν©μ μ²ν κ²½μ° Comet MLμμ μ€νλΌμΈ λ‘κΉ
μ΅μ
μ μ 곡ν©λλ€. μ€νλΌμΈ λ‘κΉ
μ΅μ
μ μ€μ νλ €λ©΄ COMET_MODE
νκ²½ λ³μλ₯Ό "μ€νλΌμΈ"μΌλ‘ μ€μ νλ©΄ μ΄ κΈ°λ₯μ μ¬μ©ν μ μμ΅λλ€. μ€ν λ°μ΄ν°λ λ‘컬 λλ ν°λ¦¬μ μ μ₯λλ©° λμ€μ μΈν°λ·μ μ°κ²°ν μ μμ λ Comet MLμ μ
λ‘λν μ μμ΅λλ€.
μμ½
This guide has walked you through integrating Comet ML with Ultralytics' YOLO11. From installation to customization, you've learned to streamline experiment management, gain real-time insights, and adapt logging to your project's needs.
Explore Comet ML's official documentation for more insights on integrating with YOLO11.
Furthermore, if you're looking to dive deeper into the practical applications of YOLO11, specifically for image segmentation tasks, this detailed guide on fine-tuning YOLO11 with Comet ML offers valuable insights and step-by-step instructions to enhance your model's performance.
λν, λ€μν 리μμ€μ μ 보λ₯Ό μ 곡νλ ν΅ν© κ°μ΄λ νμ΄μ§( Ultralytics)μμ λ€λ₯Έ ν₯λ―Έλ‘μ΄ ν΅ν© κΈ°λ₯μ μ΄ν΄λ³΄μΈμ.
μμ£Ό 묻λ μ§λ¬Έ
How do I integrate Comet ML with Ultralytics YOLO11 for training?
To integrate Comet ML with Ultralytics YOLO11, follow these steps:
-
νμν ν¨ν€μ§λ₯Ό μ€μΉν©λλ€:
-
Comet API ν€λ₯Ό μ€μ ν©λλ€:
-
Python μ½λμμ Comet νλ‘μ νΈλ₯Ό μ΄κΈ°νν©λλ€:
-
Train your YOLO11 model and log metrics:
μμΈν μ§μΉ¨μ Comet ML κ΅¬μ± μΉμ μ μ°Έμ‘°νμΈμ.
What are the benefits of using Comet ML with YOLO11?
By integrating Ultralytics YOLO11 with Comet ML, you can:
- μ€μκ° μΈμ¬μ΄νΈλ₯Ό λͺ¨λν°λ§νμΈμ: κ΅μ‘ κ²°κ³Όμ λν μ¦κ°μ μΈ νΌλλ°±μ λ°μ λΉ λ₯΄κ² μ‘°μ ν μ μμ΅λλ€.
- κ΄λ²μν λ©νΈλ¦μ κΈ°λ‘νμΈμ: 맡, μμ€, νμ΄νΌνλΌλ―Έν°, λͺ¨λΈ 체ν¬ν¬μΈνΈμ κ°μ νμ λ©νΈλ¦μ μλμΌλ‘ μΊ‘μ²ν©λλ€.
- μ€νλΌμΈμμ μ€νμ μΆμ ν©λλ€: μΈν°λ·μ μ‘μΈμ€ν μ μλ κ²½μ° λ‘컬μμ νΈλ μ΄λ μ€νμ κΈ°λ‘ν©λλ€.
- λ€μν νλ ¨ μ€νμ λΉκ΅νμΈμ: λνν Comet ML λμ보λλ₯Ό μ¬μ©νμ¬ μ¬λ¬ μ€νμ λΆμνκ³ λΉκ΅ν μ μμ΅λλ€.
μ΄λ¬ν κΈ°λ₯μ νμ©νλ©΄ λ¨Έμ λ¬λ μν¬νλ‘λ₯Ό μ΅μ ννμ¬ μ±λ₯κ³Ό μ¬νμ±μ ν₯μμν¬ μ μμ΅λλ€. μμΈν λ΄μ©μ Comet ML ν΅ν© κ°μ΄λλ₯Ό μ°Έμ‘°νμΈμ.
How do I customize the logging behavior of Comet ML during YOLO11 training?
Comet MLμ μ¬μ©νλ©΄ νκ²½ λ³μλ₯Ό μ¬μ©νμ¬ λ‘κΉ λμμ κ΄λ²μνκ² μ¬μ©μ μ§μ ν μ μμ΅λλ€:
-
κΈ°λ‘λ μ΄λ―Έμ§ μμΈ‘ μλ₯Ό λ³κ²½ν©λλ€:
-
λ°°μΉ λ‘κΉ κ°κ²©μ μ‘°μ ν©λλ€:
-
νΌλ 맀νΈλ¦μ€ λ‘κΉ μ λΉνμ±νν©λλ€:
λ λ§μ μ¬μ©μ μ§μ μ΅μ μ Comet ML λ‘κΉ μ¬μ©μ μ§μ μΉμ μ μ°Έμ‘°νμΈμ.
How do I view detailed metrics and visualizations of my YOLO11 training on Comet ML?
Once your YOLO11 model starts training, you can access a wide range of metrics and visualizations on the Comet ML dashboard. Key features include:
- Experiment Panels: View different runs and their metrics, including segment mask loss, class loss, and mean average precision.
- λ©νΈλ¦: λ©νΈλ¦: μμΈν λΆμμ μν΄ ν νμμΌλ‘ λ©νΈλ¦μ κ²ν ν©λλ€.
- λνν νΌλ 맀νΈλ¦μ€: λνν νΌλ 맀νΈλ¦μ€λ‘ λΆλ₯ μ νλλ₯Ό νκ°νμΈμ.
- μμ€ν λ©νΈλ¦: GPU λ° CPU μ¬μ©λ₯ , λ©λͺ¨λ¦¬ μ¬μ©λ λ° κΈ°ν μμ€ν λ©νΈλ¦μ λͺ¨λν°λ§ν©λλ€.
μ΄λ¬ν κΈ°λ₯μ λν μμΈν κ°μλ Comet ML μκ°νλ₯Ό ν΅ν λͺ¨λΈ μ±λ₯ μ΄ν΄ μΉμ μ μ°Έμ‘°νμΈμ.
Can I use Comet ML for offline logging when training YOLO11 models?
μ, μ€νλΌμΈ λ‘κ·ΈμΈμ μ¬μ© μ€μ νμ¬ Comet MLμ λ‘κ·ΈμΈν μ μμ΅λλ€. COMET_MODE
νκ²½ λ³μλ₯Ό "μ€νλΌμΈ"μΌλ‘ μ€μ ν©λλ€:
μ΄ κΈ°λ₯μ μ¬μ©νλ©΄ μ€ν λ°μ΄ν°λ₯Ό λ‘컬μ κΈ°λ‘ν μ μμΌλ©°, λμ€μ μΈν°λ· μ°κ²°μ΄ κ°λ₯ν λ Comet MLμ μ λ‘λν μ μμ΅λλ€. μ΄ κΈ°λ₯μ μΈν°λ· μ μμ΄ μ νλ νκ²½μμ μμ ν λ νΉν μ μ©ν©λλ€. μμΈν λ΄μ©μ μ€νλΌμΈ λ‘κΉ μΉμ μ μ°Έμ‘°νμΈμ.