์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ

๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ฐœ์š”

Ultralytics ๋Š” ๊ฐ์ง€, ์ธ์Šคํ„ด์Šค ๋ถ„ํ• , ํฌ์ฆˆ ์ถ”์ •, ๋ถ„๋ฅ˜ ๋ฐ ๋‹ค์ค‘ ๊ฐ์ฒด ์ถ”์ ๊ณผ ๊ฐ™์€ ์ปดํ“จํ„ฐ ๋น„์ „ ์ž‘์—…์„ ์šฉ์ดํ•˜๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค. ์•„๋ž˜๋Š” ์ฃผ์š” Ultralytics ๋ฐ์ดํ„ฐ ์„ธํŠธ ๋ชฉ๋ก๊ณผ ๊ฐ ์ปดํ“จํ„ฐ ๋น„์ „ ์ž‘์—… ๋ฐ ํ•ด๋‹น ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•œ ์š”์•ฝ์ž…๋‹ˆ๋‹ค.



Watch: Ultralytics ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ฐœ์š”

์‹ ๊ทœ ๐Ÿš€ Ultralytics ํƒ์ƒ‰๊ธฐ

๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•œ ์ž„๋ฒ ๋”ฉ์„ ๋งŒ๋“ค๊ณ , ์œ ์‚ฌํ•œ ์ด๋ฏธ์ง€๋ฅผ ๊ฒ€์ƒ‰ํ•˜๊ณ , SQL ์ฟผ๋ฆฌ๋ฅผ ์‹คํ–‰ํ•˜๊ณ , ์‹œ๋งจํ‹ฑ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ์ž์—ฐ์–ด๋ฅผ ์‚ฌ์šฉํ•ด ๊ฒ€์ƒ‰ํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค! ์ €ํฌ์˜ GUI ์•ฑ์œผ๋กœ ์‹œ์ž‘ํ•˜๊ฑฐ๋‚˜ API๋ฅผ ์‚ฌ์šฉํ•ด ์ง์ ‘ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—์„œ ์ž์„ธํžˆ ์•Œ์•„๋ณด์„ธ์š”.

Ultralytics ํƒ์ƒ‰๊ธฐ ์Šคํฌ๋ฆฐ์ƒท

๋ฌผ์ฒด ๊ฐ์ง€

๊ฒฝ๊ณ„ ์ƒ์ž ๊ฐ์ฒด ๊ฐ์ง€๋Š” ๊ฐ ๊ฐ์ฒด ์ฃผ์œ„์— ๊ฒฝ๊ณ„ ์ƒ์ž๋ฅผ ๊ทธ๋ ค ์ด๋ฏธ์ง€์—์„œ ๊ฐ์ฒด๋ฅผ ๊ฐ์ง€ํ•˜๊ณ  ์œ„์น˜๋ฅผ ํŒŒ์•…ํ•˜๋Š” ์ปดํ“จํ„ฐ ๋น„์ „ ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค.

  • Argoverse: ํ’๋ถ€ํ•œ ์ฃผ์„์ด ํฌํ•จ๋œ ๋„์‹œ ํ™˜๊ฒฝ์˜ 3D ์ถ”์  ๋ฐ ๋ชจ์…˜ ์˜ˆ์ธก ๋ฐ์ดํ„ฐ๊ฐ€ ํฌํ•จ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • COCO: ์ปจํ…์ŠคํŠธ ๋‚ด ๊ณตํ†ต ๊ฐœ์ฒด(COCO)๋Š” 80๊ฐœ์˜ ๊ฐœ์ฒด ๋ฒ”์ฃผ๋กœ ๊ตฌ์„ฑ๋œ ๋Œ€๊ทœ๋ชจ ๊ฐœ์ฒด ๊ฐ์ง€, ์„ธ๋ถ„ํ™” ๋ฐ ์บก์…˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • LVIS: 1203๊ฐœ์˜ ๊ฐ์ฒด ์นดํ…Œ๊ณ ๋ฆฌ๊ฐ€ ํฌํ•จ๋œ ๋Œ€๊ทœ๋ชจ ๊ฐ์ฒด ๊ฐ์ง€, ์„ธ๋ถ„ํ™” ๋ฐ ์บก์…˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • COCO8: ๋น ๋ฅธ ํ…Œ์ŠคํŠธ์— ์ ํ•ฉํ•œ COCO train ๋ฐ COCO val์˜ ์ฒ˜์Œ 4๊ฐœ ์ด๋ฏธ์ง€์˜ ์ž‘์€ ํ•˜์œ„ ์ง‘ํ•ฉ์ž…๋‹ˆ๋‹ค.
  • COCO128: A smaller subset of the first 128 images from COCO train and COCO val, suitable for tests.
  • ๊ธ€๋กœ๋ฒŒ ๋ฐ€ 2020: ๊ธ€๋กœ๋ฒŒ ๋ฐ€ ์ฑŒ๋ฆฐ์ง€ 2020์˜ ๋ฐ€ ๋จธ๋ฆฌ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • Objects365: 365๊ฐœ์˜ ๋ฌผ์ฒด ์นดํ…Œ๊ณ ๋ฆฌ์™€ 60๋งŒ ๊ฐœ ์ด์ƒ์˜ ์ฃผ์„์ด ๋‹ฌ๋ฆฐ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋œ ๊ณ ํ’ˆ์งˆ์˜ ๋Œ€๊ทœ๋ชจ ๋ฌผ์ฒด ๊ฐ์ง€ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • OpenImagesV7: 170๋งŒ ๊ฐœ์˜ ์—ด์ฐจ ์ด๋ฏธ์ง€์™€ 4๋งŒ 2์ฒœ ๊ฐœ์˜ ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋œ Google ์˜ ํฌ๊ด„์ ์ธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • SKU-110K: 11K ๊ฐœ ์ด์ƒ์˜ ์ด๋ฏธ์ง€์™€ 170๋งŒ ๊ฐœ์˜ ๊ฒฝ๊ณ„ ์ƒ์ž๋กœ ๊ตฌ์„ฑ๋œ ์†Œ๋งค ํ™˜๊ฒฝ์—์„œ์˜ ๊ณ ๋ฐ€๋„ ๋ฌผ์ฒด ๊ฐ์ง€ ๊ธฐ๋Šฅ์„ ๊ฐ–์ถ˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • VisDrone: 10K ์ด์ƒ์˜ ์ด๋ฏธ์ง€์™€ ๋น„๋””์˜ค ์‹œํ€€์Šค๊ฐ€ ํฌํ•จ๋œ ๋“œ๋ก ์œผ๋กœ ์บก์ฒ˜ํ•œ ์ด๋ฏธ์ง€์˜ ๊ฐ์ฒด ๊ฐ์ง€ ๋ฐ ๋‹ค์ค‘ ๊ฐ์ฒด ์ถ”์  ๋ฐ์ดํ„ฐ๊ฐ€ ํฌํ•จ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • VOC: 20๊ฐœ์˜ ๊ฐ์ฒด ํด๋ž˜์Šค์™€ 11,000๊ฐœ ์ด์ƒ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋œ ๊ฐ์ฒด ๊ฐ์ง€ ๋ฐ ๋ถ„ํ• ์„ ์œ„ํ•œ ํŒŒ์Šค์นผ ์‹œ๊ฐ ๊ฐ์ฒด ํด๋ž˜์Šค(VOC) ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • xView: 60๊ฐœ์˜ ๊ฐ์ฒด ์นดํ…Œ๊ณ ๋ฆฌ์™€ 100๋งŒ ๊ฐœ ์ด์ƒ์˜ ์ฃผ์„์ด ๋‹ฌ๋ฆฐ ์˜ค๋ฒ„ํ—ค๋“œ ์ด๋ฏธ์ง€์—์„œ ๊ฐ์ฒด๋ฅผ ๊ฐ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • Roboflow 100: ํฌ๊ด„์ ์ธ ๋ชจ๋ธ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด 7๊ฐœ ์ด๋ฏธ์ง€ ์˜์—ญ์— ๊ฑธ์ณ 100๊ฐœ์˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ํฌํ•จํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ฌผ์ฒด ๊ฐ์ง€ ๋ฒค์น˜๋งˆํฌ์ž…๋‹ˆ๋‹ค.
  • ๋‡Œ์ข…์–‘: ๋‡Œ์ข…์–‘์„ ๊ฐ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—๋Š” ์ข…์–‘์˜ ์กด์žฌ ์—ฌ๋ถ€, ์œ„์น˜ ๋ฐ ํŠน์„ฑ์— ๋Œ€ํ•œ ์„ธ๋ถ€ ์ •๋ณด๊ฐ€ ํฌํ•จ๋œ MRI ๋˜๋Š” CT ์Šค์บ” ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋ฉ๋‹ˆ๋‹ค.
  • ์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ: ๋ฒ„ํŒ”๋กœ, ์ฝ”๋ผ๋ฆฌ, ์ฝ”๋ฟ”์†Œ, ์–ผ๋ฃฉ๋ง ๋“ฑ ์•„ํ”„๋ฆฌ์นด ์•ผ์ƒ๋™๋ฌผ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • ์„œ๋ช…: ์„œ๋ช…: ์ฃผ์„์ด ๋‹ฌ๋ฆฐ ์„œ๋ช…์ด ์žˆ๋Š” ๋‹ค์–‘ํ•œ ๋ฌธ์„œ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ, ๋ฌธ์„œ ๊ฒ€์ฆ ๋ฐ ์‚ฌ๊ธฐ ํƒ์ง€ ์—ฐ๊ตฌ๋ฅผ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค.

์ธ์Šคํ„ด์Šค ์„ธ๋ถ„ํ™”

์ธ์Šคํ„ด์Šค ๋ถ„ํ• ์€ ํ”ฝ์…€ ์ˆ˜์ค€์—์„œ ์ด๋ฏธ์ง€์˜ ๊ฐ์ฒด๋ฅผ ์‹๋ณ„ํ•˜๊ณ  ์œ„์น˜๋ฅผ ํŒŒ์•…ํ•˜๋Š” ์ปดํ“จํ„ฐ ๋น„์ „ ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค.

  • COCO: 200๋งŒ ๊ฐœ ์ด์ƒ์˜ ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋œ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋œ ๊ฐ์ฒด ๊ฐ์ง€, ๋ถ„ํ•  ๋ฐ ์บก์…˜ ์ž‘์—…์„ ์œ„ํ•ด ์„ค๊ณ„๋œ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • COCO8-seg: ์„ธ๋ถ„ํ™” ์ฃผ์„์ด ์žˆ๋Š” 8๊ฐœ์˜ COCO ์ด๋ฏธ์ง€ ํ•˜์œ„ ์ง‘ํ•ฉ์„ ํฌํ•จํ•˜๋Š” ์ธ์Šคํ„ด์Šค ์„ธ๋ถ„ํ™” ์ž‘์—…์„ ์œ„ํ•œ ๋” ์ž‘์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • COCO128-seg: A smaller dataset for instance segmentation tasks, containing a subset of 128 COCO images with segmentation annotations.
  • ๊ท ์—ด ์„ธ๊ทธ๋จผํŠธ: ๋„๋กœ์™€ ๋ฒฝ์˜ ๊ท ์—ด์„ ๊ฐ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ํŠน๋ณ„ํžˆ ์ œ์ž‘๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ, ๋ฌผ์ฒด ๊ฐ์ง€ ๋ฐ ๋ถ„ํ•  ์ž‘์—…์— ๋ชจ๋‘ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ํŒจํ‚ค์ง€ ์„ธ๊ทธ๋จผํŠธ: ์ฐฝ๊ณ  ๋˜๋Š” ์‚ฐ์—… ํ™˜๊ฒฝ์—์„œ ํŒจํ‚ค์ง€๋ฅผ ์‹๋ณ„ํ•˜๊ธฐ ์œ„ํ•œ ๋งž์ถคํ˜• ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ, ๋ฌผ์ฒด ๊ฐ์ง€ ๋ฐ ์„ธ๋ถ„ํ™” ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์— ๋ชจ๋‘ ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค.
  • Carparts-seg: ์ฐจ๋Ÿ‰ ๋ถ€ํ’ˆ์„ ์‹๋ณ„ํ•˜๊ธฐ ์œ„ํ•ด ํŠน๋ณ„ํžˆ ์ œ์ž‘๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ, ์„ค๊ณ„, ์ œ์กฐ ๋ฐ ์—ฐ๊ตฌ ์š”๊ตฌ ์‚ฌํ•ญ์„ ์ถฉ์กฑํ•ฉ๋‹ˆ๋‹ค. ๊ฐ์ฒด ๊ฐ์ง€ ๋ฐ ์„ธ๋ถ„ํ™” ์ž‘์—…์— ๋ชจ๋‘ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.

ํฌ์ฆˆ ์ถ”์ •

ํฌ์ฆˆ ์ถ”์ •์€ ์นด๋ฉ”๋ผ ๋˜๋Š” ์›”๋“œ ์ขŒํ‘œ๊ณ„๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์˜ค๋ธŒ์ ํŠธ์˜ ํฌ์ฆˆ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค.

  • COCO: ํฌ์ฆˆ ์ถ”์ • ์ž‘์—…์„ ์œ„ํ•ด ์„ค๊ณ„๋œ ์‚ฌ๋žŒ ํฌ์ฆˆ ์ฃผ์„์ด ํฌํ•จ๋œ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • COCO8-pose: ํฌ์ฆˆ ์ถ”์ • ์ž‘์—…์„ ์œ„ํ•œ ๋” ์ž‘์€ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์œผ๋กœ, ์‚ฌ๋žŒ์˜ ํฌ์ฆˆ ์ฃผ์„์ด ์žˆ๋Š” 8๊ฐœ์˜ COCO ์ด๋ฏธ์ง€ ํ•˜์œ„ ์ง‘ํ•ฉ์„ ํฌํ•จํ•ฉ๋‹ˆ๋‹ค.
  • ํ˜ธ๋ž‘์ด ํฌ์ฆˆ: ํ˜ธ๋ž‘์ด์— ์ดˆ์ ์„ ๋งž์ถ˜ 263๊ฐœ์˜ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋œ ์ปดํŒฉํŠธํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ, ํฌ์ฆˆ ์ถ”์ • ์ž‘์—…์„ ์œ„ํ•ด ํ˜ธ๋ž‘์ด๋‹น 12๊ฐœ์˜ ํ‚คํฌ์ธํŠธ๊ฐ€ ์ฃผ์„ ์ฒ˜๋ฆฌ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

๋ถ„๋ฅ˜

์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋Š” ์‹œ๊ฐ์  ์ฝ˜ํ…์ธ ์— ๋”ฐ๋ผ ์ด๋ฏธ์ง€๋ฅผ ํ•˜๋‚˜ ์ด์ƒ์˜ ์‚ฌ์ „ ์ •์˜๋œ ํด๋ž˜์Šค ๋˜๋Š” ์นดํ…Œ๊ณ ๋ฆฌ๋กœ ๋ถ„๋ฅ˜ํ•˜๋Š” ์ปดํ“จํ„ฐ ๋น„์ „ ์ž‘์—…์ž…๋‹ˆ๋‹ค.

  • Caltech 101: ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์ž‘์—…์„ ์œ„ํ•œ 101๊ฐœ ๊ฐ์ฒด ์นดํ…Œ๊ณ ๋ฆฌ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • Caltech 256: 256๊ฐœ์˜ ๊ฐœ์ฒด ๋ฒ”์ฃผ์™€ ๋” ์–ด๋ ค์šด ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋œ Caltech 101์˜ ํ™•์žฅ ๋ฒ„์ „์ž…๋‹ˆ๋‹ค.
  • CIFAR-10: 10๊ฐœ์˜ ํด๋ž˜์Šค๋กœ ๊ตฌ์„ฑ๋œ 60K 32x32 ์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ์„ธํŠธ(ํด๋ž˜์Šค๋‹น 6K ์ด๋ฏธ์ง€)์ž…๋‹ˆ๋‹ค.
  • CIFAR-100: 100๊ฐœ์˜ ๊ฐ์ฒด ์นดํ…Œ๊ณ ๋ฆฌ์™€ ํด๋ž˜์Šค๋‹น 600๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋œ CIFAR-10์˜ ํ™•์žฅ ๋ฒ„์ „์ž…๋‹ˆ๋‹ค.
  • Fashion-MNIST: ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์ž‘์—…์„ ์œ„ํ•œ 10๊ฐ€์ง€ ํŒจ์…˜ ์นดํ…Œ๊ณ ๋ฆฌ์˜ 70,000๊ฐœ ํ‘๋ฐฑ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • ImageNet: 1,400๋งŒ ๊ฐœ ์ด์ƒ์˜ ์ด๋ฏธ์ง€์™€ 20,000๊ฐœ ์ด์ƒ์˜ ์นดํ…Œ๊ณ ๋ฆฌ๊ฐ€ ํฌํ•จ๋œ ๋ฌผ์ฒด ๊ฐ์ง€ ๋ฐ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜๋ฅผ ์œ„ํ•œ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • ImageNet-10: ๋” ๋น ๋ฅธ ์‹คํ—˜๊ณผ ํ…Œ์ŠคํŠธ๋ฅผ ์œ„ํ•ด 10๊ฐœ์˜ ์นดํ…Œ๊ณ ๋ฆฌ๋กœ ๊ตฌ์„ฑ๋œ ImageNet์˜ ์ž‘์€ ํ•˜์œ„ ์ง‘ํ•ฉ์ž…๋‹ˆ๋‹ค.
  • ์ด๋ฏธ์ง€๋„ท: ๋” ๋น ๋ฅธ ๊ต์œก๊ณผ ํ…Œ์ŠคํŠธ๋ฅผ ์œ„ํ•ด ์‰ฝ๊ฒŒ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋Š” 10๊ฐœ์˜ ํด๋ž˜์Šค๋ฅผ ํฌํ•จํ•˜๋Š” ImageNet์˜ ์ž‘์€ ํ•˜์œ„ ์ง‘ํ•ฉ์ž…๋‹ˆ๋‹ค.
  • ์ด๋ฏธ์ง€ ์šฐํ”„: ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์ž‘์—…์„ ์œ„ํ•œ 10๊ฐ€์ง€ ๊ฒฌ์ข… ์นดํ…Œ๊ณ ๋ฆฌ๋ฅผ ํฌํ•จํ•˜๋Š” ImageNet์˜ ๋” ๊นŒ๋‹ค๋กœ์šด ํ•˜์œ„ ์ง‘ํ•ฉ์ž…๋‹ˆ๋‹ค.
  • MNIST: ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์ž‘์—…์„ ์œ„ํ•œ 70,000๊ฐœ์˜ ์†์œผ๋กœ ์“ด ์ˆซ์ž๋กœ ๊ตฌ์„ฑ๋œ ํšŒ์ƒ‰์กฐ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.

OBB(์˜ค๋ฆฌ์—”ํ‹ฐ๋“œ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค)

์˜ค๋ฆฌ์—”ํ‹ฐ๋“œ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค(OBB)๋Š” ํšŒ์ „๋œ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€์—์„œ ๊ฐ์ง„ ๋ฌผ์ฒด๋ฅผ ๊ฐ์ง€ํ•˜๋Š” ์ปดํ“จํ„ฐ ๋น„์ „์˜ ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ, ํ•ญ๊ณต ๋ฐ ์œ„์„ฑ ์ด๋ฏธ์ง€์— ์ฃผ๋กœ ์ ์šฉ๋ฉ๋‹ˆ๋‹ค.

  • DOTA-v2: 170๋งŒ ๊ฐœ์˜ ์ธ์Šคํ„ด์Šค์™€ 11,268๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋œ ์ธ๊ธฐ ์žˆ๋Š” OBB ํ•ญ๊ณต ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • DOTA8: A smaller subset of the first 8 images from the DOTAv1 split set, 4 for training and 4 for validation, suitable for quick tests.

๋‹ค์ค‘ ๊ฐ์ฒด ์ถ”์ 

๋‹ค์ค‘ ๊ฐ์ฒด ์ถ”์ ์€ ๋น„๋””์˜ค ์‹œํ€€์Šค์—์„œ ์‹œ๊ฐ„ ๊ฒฝ๊ณผ์— ๋”ฐ๋ผ ์—ฌ๋Ÿฌ ๊ฐ์ฒด๋ฅผ ๊ฐ์ง€ํ•˜๊ณ  ์ถ”์ ํ•˜๋Š” ์ปดํ“จํ„ฐ ๋น„์ „ ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค.

  • Argoverse: ๋‹ค์ค‘ ๊ฐ์ฒด ์ถ”์  ์ž‘์—…์„ ์œ„ํ•œ ํ’๋ถ€ํ•œ ์ฃผ์„์ด ํฌํ•จ๋œ ๋„์‹œ ํ™˜๊ฒฝ์˜ 3D ์ถ”์  ๋ฐ ๋ชจ์…˜ ์˜ˆ์ธก ๋ฐ์ดํ„ฐ๊ฐ€ ํฌํ•จ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • VisDrone: 10K ์ด์ƒ์˜ ์ด๋ฏธ์ง€์™€ ๋น„๋””์˜ค ์‹œํ€€์Šค๊ฐ€ ํฌํ•จ๋œ ๋“œ๋ก ์œผ๋กœ ์บก์ฒ˜ํ•œ ์ด๋ฏธ์ง€์˜ ๊ฐ์ฒด ๊ฐ์ง€ ๋ฐ ๋‹ค์ค‘ ๊ฐ์ฒด ์ถ”์  ๋ฐ์ดํ„ฐ๊ฐ€ ํฌํ•จ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.

์ƒˆ ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ธฐ์—ฌ

์ƒˆ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ๊ธฐ์—ฌํ•˜๋ ค๋ฉด ๊ธฐ์กด ์ธํ”„๋ผ์™€ ์ž˜ ๋งž๋„๋ก ํ•˜๊ธฐ ์œ„ํ•ด ๋ช‡ ๊ฐ€์ง€ ๋‹จ๊ณ„๋ฅผ ๊ฑฐ์ณ์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ํ•„์š”ํ•œ ๋‹จ๊ณ„์ž…๋‹ˆ๋‹ค:

์ƒˆ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ๊ธฐ์—ฌํ•˜๋Š” ๋‹จ๊ณ„

  1. ์ด๋ฏธ์ง€ ์ˆ˜์ง‘: ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์— ์†ํ•œ ์ด๋ฏธ์ง€๋ฅผ ์ˆ˜์ง‘ํ•ฉ๋‹ˆ๋‹ค. ๊ณต๊ฐœ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋‚˜ ์ž์ฒด ์ปฌ๋ ‰์…˜ ๋“ฑ ๋‹ค์–‘ํ•œ ์†Œ์Šค์—์„œ ์ด๋ฏธ์ง€๋ฅผ ์ˆ˜์ง‘ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  2. ์ด๋ฏธ์ง€์— ์ฃผ์„์„ ๋‹ฌ๊ธฐ: ์ž‘์—…์— ๋”ฐ๋ผ ๊ฒฝ๊ณ„ ์ƒ์ž, ์„ธ๊ทธ๋จผํŠธ ๋˜๋Š” ํ‚คํฌ์ธํŠธ๋กœ ์ด๋ฏธ์ง€์— ์ฃผ์„์„ ๋‹ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  3. ์ฃผ์„ ๋‚ด๋ณด๋‚ด๊ธฐ: ์ด๋Ÿฌํ•œ ์ฃผ์„์„ YOLO *.txt ํŒŒ์ผ ํ˜•์‹์„ ์ง€์›ํ•˜๋Š” Ultralytics .
  4. ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ ๊ตฌ์„ฑ: ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ์˜ฌ๋ฐ”๋ฅธ ํด๋” ๊ตฌ์กฐ๋กœ ์ •๋ ฌํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์Œ์ด ์žˆ์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. train/ ๊ทธ๋ฆฌ๊ณ  val/ ์ตœ์ƒ์œ„ ๋””๋ ‰ํ„ฐ๋ฆฌ์™€ ๊ฐ ๋””๋ ‰ํ„ฐ๋ฆฌ ๋‚ด์— images/ ๊ทธ๋ฆฌ๊ณ  labels/ ํ•˜์œ„ ๋””๋ ‰ํ„ฐ๋ฆฌ๋กœ ์ด๋™ํ•ฉ๋‹ˆ๋‹ค.

    dataset/
    โ”œโ”€โ”€ train/
    โ”‚   โ”œโ”€โ”€ images/
    โ”‚   โ””โ”€โ”€ labels/
    โ””โ”€โ”€ val/
        โ”œโ”€โ”€ images/
        โ””โ”€โ”€ labels/
    
  5. ๋งŒ๋“ค๊ธฐ data.yaml ํŒŒ์ผ: ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์˜ ๋ฃจํŠธ ๋””๋ ‰ํ„ฐ๋ฆฌ์— data.yaml ๋ฐ์ดํ„ฐ ์„ธํŠธ, ํด๋ž˜์Šค ๋ฐ ๊ธฐํƒ€ ํ•„์š”ํ•œ ์ •๋ณด๋ฅผ ์„ค๋ช…ํ•˜๋Š” ํŒŒ์ผ์ž…๋‹ˆ๋‹ค.

  6. ์ด๋ฏธ์ง€ ์ตœ์ ํ™”(์„ ํƒ ์‚ฌํ•ญ): ๋ณด๋‹ค ํšจ์œจ์ ์ธ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ํฌ๊ธฐ๋ฅผ ์ค„์ด๋ ค๋ฉด ์•„๋ž˜ ์ฝ”๋“œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€๋ฅผ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ•„์ˆ˜๋Š” ์•„๋‹ˆ์ง€๋งŒ ๋ฐ์ดํ„ฐ ์„ธํŠธ ํฌ๊ธฐ๋ฅผ ์ค„์ด๊ณ  ๋‹ค์šด๋กœ๋“œ ์†๋„๋ฅผ ๋†’์ด๋ ค๋ฉด ๊ถŒ์žฅ๋ฉ๋‹ˆ๋‹ค.
  7. ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ ์••์ถ•: ์ „์ฒด ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ ํด๋”๋ฅผ zip ํŒŒ์ผ๋กœ ์••์ถ•ํ•ฉ๋‹ˆ๋‹ค.
  8. ๋ฌธ์„œ ๋ฐ ํ™๋ณด: ๋ฐ์ดํ„ฐ ์„ธํŠธ๊ฐ€ ๊ธฐ์กด ํ”„๋ ˆ์ž„์›Œํฌ์— ์–ด๋–ป๊ฒŒ ๋“ค์–ด๋งž๋Š”์ง€ ์„ค๋ช…ํ•˜๋Š” ๋ฌธ์„œ ํŽ˜์ด์ง€๋ฅผ ๋งŒ๋“œ์„ธ์š”. ๊ทธ๋Ÿฐ ๋‹ค์Œ ํ’€ ๋ฆฌํ€˜์ŠคํŠธ(PR)๋ฅผ ์ œ์ถœํ•ฉ๋‹ˆ๋‹ค. PR์„ ์ œ์ถœํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ Ultralytics ๊ธฐ์—ฌ ๊ฐ€์ด๋“œ๋ผ์ธ์„ ์ฐธ์กฐํ•˜์„ธ์š”.

๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ์ตœ์ ํ™”ํ•˜๊ณ  ์••์ถ•ํ•˜๋Š” ์ฝ”๋“œ ์˜ˆ์ œ

๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ ์ตœ์ ํ™” ๋ฐ ์••์ถ•

from pathlib import Path

from ultralytics.data.utils import compress_one_image
from ultralytics.utils.downloads import zip_directory

# Define dataset directory
path = Path("path/to/dataset")

# Optimize images in dataset (optional)
for f in path.rglob("*.jpg"):
    compress_one_image(f)

# Zip dataset into 'path/to/dataset.zip'
zip_directory(path)

๋‹ค์Œ ๋‹จ๊ณ„์— ๋”ฐ๋ผ Ultralytics' ๊ธฐ์กด ๊ตฌ์กฐ์™€ ์ž˜ ํ†ตํ•ฉ๋˜๋Š” ์ƒˆ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ

Ultralytics ์—์„œ ๊ฐ์ฒด ๊ฐ์ง€๋ฅผ ์œ„ํ•ด ์ง€์›ํ•˜๋Š” ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”?

Ultralytics supports a wide variety of datasets for object detection, including:

  • COCO: A large-scale object detection, segmentation, and captioning dataset with 80 object categories.
  • LVIS: An extensive dataset with 1203 object categories, designed for more fine-grained object detection and segmentation.
  • Argoverse: ํ’๋ถ€ํ•œ ์ฃผ์„์ด ํฌํ•จ๋œ ๋„์‹œ ํ™˜๊ฒฝ์˜ 3D ์ถ”์  ๋ฐ ๋ชจ์…˜ ์˜ˆ์ธก ๋ฐ์ดํ„ฐ๊ฐ€ ํฌํ•จ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.
  • VisDrone: A dataset with object detection and multi-object tracking data from drone-captured imagery.
  • SKU-110K: Featuring dense object detection in retail environments with over 11K images.

์ด๋Ÿฌํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋‹ค์–‘ํ•œ ๋ฌผ์ฒด ๊ฐ์ง€ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์œ„ํ•œ ๊ฐ•๋ ฅํ•œ ๋ชจ๋ธ ํ•™์Šต์„ ์šฉ์ดํ•˜๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.

Ultralytics ์— ์ƒˆ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ๊ธฐ์—ฌํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•˜๋‚˜์š”?

Contributing a new dataset involves several steps:

  1. Collect Images: Gather images from public databases or personal collections.
  2. Annotate Images: Apply bounding boxes, segments, or keypoints, depending on the task.
  3. ์ฃผ์„ ๋‚ด๋ณด๋‚ด๊ธฐ: ์–ด๋…ธํ…Œ์ด์…˜์„ YOLO *.txt ํ˜•์‹์ž…๋‹ˆ๋‹ค.
  4. ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ ๊ตฌ์„ฑ: ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํด๋” ๊ตฌ์กฐ ์‚ฌ์šฉ train/ ๊ทธ๋ฆฌ๊ณ  val/ ๋””๋ ‰ํ† ๋ฆฌ์— ๊ฐ๊ฐ images/ ๊ทธ๋ฆฌ๊ณ  labels/ subdirectories.
  5. ๋งŒ๋“ค๊ธฐ data.yaml ํŒŒ์ผ: Include dataset descriptions, classes, and other relevant information.
  6. Optimize Images (Optional): Reduce dataset size for efficiency.
  7. Zip Dataset: Compress the dataset into a zip file.
  8. Document and PR: Describe your dataset and submit a Pull Request following Ultralytics Contribution Guidelines.

์ข…ํ•ฉ ๊ฐ€์ด๋“œ๋ฅผ ๋ณด๋ ค๋ฉด ์ƒˆ ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ธฐ์—ฌ๋ฅผ ๋ฐฉ๋ฌธํ•˜์„ธ์š”.

๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์— Ultralytics Explorer๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋Š” ์ด์œ ๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”?

Ultralytics Explorer offers powerful features for dataset analysis, including:

  • Embeddings Generation: Create vector embeddings for images.
  • Semantic Search: Search for similar images using embeddings or AI.
  • SQL Queries: Run advanced SQL queries for detailed data analysis.
  • Natural Language Search: Search using plain language queries for ease of use.

์ž์„ธํ•œ ๋‚ด์šฉ์€ Ultralytics ํƒ์ƒ‰ ๊ธฐ๋ฅผ ์‚ดํŽด๋ณด๊ณ  GUI ๋ฐ๋ชจ๋ฅผ ์‚ฌ์šฉํ•ด ๋ณด์„ธ์š”.

์ปดํ“จํ„ฐ ๋น„์ „์šฉ Ultralytics YOLO ๋ชจ๋ธ์˜ ๊ณ ์œ ํ•œ ๊ธฐ๋Šฅ์€ ๋ฌด์—‡์ธ๊ฐ€์š”?

Ultralytics YOLO models provide several unique features:

  • Real-time Performance: High-speed inference and training.
  • Versatility: Suitable for detection, segmentation, classification, and pose estimation tasks.
  • Pretrained Models: Access to high-performing, pretrained models for various applications.
  • Extensive Community Support: Active community and comprehensive documentation for troubleshooting and development.

YOLO ์— ๋Œ€ํ•ด ์ž์„ธํžˆ ์•Œ์•„๋ณด์„ธ์š”. Ultralytics YOLO ํŽ˜์ด์ง€์—์„œ ํ™•์ธํ•˜์„ธ์š”.

Ultralytics ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ์ตœ์ ํ™”ํ•˜๊ณ  ์••์ถ•ํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•˜๋‚˜์š”?

Ultralytics ๋„๊ตฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ์ตœ์ ํ™”ํ•˜๊ณ  ์••์ถ•ํ•˜๋ ค๋ฉด ๋‹ค์Œ ์˜ˆ์ œ ์ฝ”๋“œ๋ฅผ ๋”ฐ๋ฅด์„ธ์š”:

๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ ์ตœ์ ํ™” ๋ฐ ์••์ถ•

from pathlib import Path

from ultralytics.data.utils import compress_one_image
from ultralytics.utils.downloads import zip_directory

# Define dataset directory
path = Path("path/to/dataset")

# Optimize images in dataset (optional)
for f in path.rglob("*.jpg"):
    compress_one_image(f)

# Zip dataset into 'path/to/dataset.zip'
zip_directory(path)

๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ์ตœ์ ํ™”ํ•˜๊ณ  ์••์ถ•ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์ž์„ธํžˆ ์•Œ์•„๋ณด์„ธ์š”.


๐Ÿ“… Created 10 months ago โœ๏ธ Updated 4 days ago

๋Œ“๊ธ€