์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ

Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ

Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋ฌผ์ฒด ์ธ์‹ ์ž‘์—…์— ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ, 101๊ฐœ์˜ ๋ฌผ์ฒด ๋ฒ”์ฃผ์— ์†ํ•˜๋Š” ์•ฝ 9,000๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์นดํ…Œ๊ณ ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ์‹ค์ œ ์‚ฌ๋ฌผ์„ ๋ฐ˜์˜ํ•˜๋„๋ก ์„ ํƒ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋ฏธ์ง€ ์ž์ฒด์— ์ฃผ์„์„ ๋‹ฌ์•„ ์‚ฌ๋ฌผ ์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•œ ๊นŒ๋‹ค๋กœ์šด ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ๊ณตํ•˜๋„๋ก ์‹ ์ค‘ํ•˜๊ฒŒ ์„ ํƒ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

์ฃผ์š” ๊ธฐ๋Šฅ

  • Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์•ฝ 9,000๊ฐœ์˜ ์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€๊ฐ€ 101๊ฐœ์˜ ์นดํ…Œ๊ณ ๋ฆฌ๋กœ ๋‚˜๋‰˜์–ด์ ธ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์นดํ…Œ๊ณ ๋ฆฌ์—๋Š” ๋™๋ฌผ, ์ฐจ๋Ÿ‰, ๊ฐ€์ •์šฉํ’ˆ, ์‚ฌ๋žŒ ๋“ฑ ๋‹ค์–‘ํ•œ ์‚ฌ๋ฌผ์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค.
  • ์นดํ…Œ๊ณ ๋ฆฌ๋‹น ์ด๋ฏธ์ง€ ์ˆ˜๋Š” ๊ฐ ์นดํ…Œ๊ณ ๋ฆฌ์— ์•ฝ 40~800๊ฐœ์˜ ์ด๋ฏธ์ง€๋กœ ๋‹ค์–‘ํ•ฉ๋‹ˆ๋‹ค.
  • ์ด๋ฏธ์ง€๋Š” ๋‹ค์–‘ํ•œ ํฌ๊ธฐ๋กœ ์ œ๊ณต๋˜๋ฉฐ, ๋Œ€๋ถ€๋ถ„์˜ ์ด๋ฏธ์ง€๋Š” ์ค‘๊ฐ„ ํ•ด์ƒ๋„์ž…๋‹ˆ๋‹ค.
  • Caltech-101์€ ๋จธ์‹ ๋Ÿฌ๋‹ ๋ถ„์•ผ, ํŠนํžˆ ๊ฐ์ฒด ์ธ์‹ ์ž‘์—…์˜ ํ›ˆ๋ จ ๋ฐ ํ…Œ์ŠคํŠธ์— ๋„๋ฆฌ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.

๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์กฐ

๋‹ค๋ฅธ ๋งŽ์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ์™€ ๋‹ฌ๋ฆฌ, Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๊ณต์‹์ ์œผ๋กœ ํ›ˆ๋ จ ์„ธํŠธ์™€ ํ…Œ์ŠคํŠธ ์„ธํŠธ๋กœ ๋ถ„ํ• ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ์‚ฌ์šฉ์ž๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ํŠน์ • ์š”๊ตฌ ์‚ฌํ•ญ์— ๋”ฐ๋ผ ์ž์ฒด์ ์œผ๋กœ ๋ถ„ํ• ์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ผ๋ฐ˜์ ์œผ๋กœ ํ›ˆ๋ จ์šฉ ์ด๋ฏธ์ง€์˜ ๋ฌด์ž‘์œ„ ํ•˜์œ„ ์ง‘ํ•ฉ(์˜ˆ: ์นดํ…Œ๊ณ ๋ฆฌ๋‹น 30๊ฐœ์˜ ์ด๋ฏธ์ง€)์„ ์‚ฌ์šฉํ•˜๊ณ  ๋‚˜๋จธ์ง€ ์ด๋ฏธ์ง€๋ฅผ ํ…Œ์ŠคํŠธ์šฉ์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์ด ์ผ๋ฐ˜์ ์ž…๋‹ˆ๋‹ค.

์• ํ”Œ๋ฆฌ์ผ€์ด์…˜

Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง(CNN), ์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹ (SVM) ๋ฐ ๊ธฐํƒ€ ๋‹ค์–‘ํ•œ ๋จธ์‹  ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ฐ™์€ ๊ฐ์ฒด ์ธ์‹ ์ž‘์—…์—์„œ ๋”ฅ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ  ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ๋‹ค์–‘ํ•œ ์นดํ…Œ๊ณ ๋ฆฌ์™€ ๊ณ ํ’ˆ์งˆ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์–ด ๋จธ์‹  ๋Ÿฌ๋‹ ๋ฐ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์˜ ์—ฐ๊ตฌ ๊ฐœ๋ฐœ์„ ์œ„ํ•œ ํ›Œ๋ฅญํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.

์‚ฌ์šฉ๋ฒ•

๋‹ค์Œ ์ฝ”๋“œ ์กฐ๊ฐ์„ ์‚ฌ์šฉํ•˜์—ฌ 100๊ฐœ ์‹ ๊ธฐ์›์— ๋Œ€ํ•œ Caltech-101 ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์—์„œ YOLO ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ธ์ˆ˜์˜ ์ „์ฒด ๋ชฉ๋ก์€ ๋ชจ๋ธ ํ•™์Šต ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์—ด์ฐจ ์˜ˆ์‹œ

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-cls.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="caltech101", epochs=100, imgsz=416)
# Start training from a pretrained *.pt model
yolo classify train data=caltech101 model=yolov8n-cls.pt epochs=100 imgsz=416

์ƒ˜ํ”Œ ์ด๋ฏธ์ง€ ๋ฐ ์ฃผ์„

Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ์—๋Š” ๋‹ค์–‘ํ•œ ๋ฌผ์ฒด์˜ ๊ณ ํ’ˆ์งˆ ์ปฌ๋Ÿฌ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ๋ฌผ์ฒด ์ธ์‹ ์ž‘์—…์„ ์œ„ํ•œ ์ž˜ ๊ตฌ์กฐํ™”๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋ช‡ ๊ฐ€์ง€ ์ด๋ฏธ์ง€ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค:

๋ฐ์ดํ„ฐ ์„ธํŠธ ์ƒ˜ํ”Œ ์ด๋ฏธ์ง€

์ด ์˜ˆ๋Š” Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ํฌํ•จ๋œ ๊ฐ์ฒด์˜ ๋‹ค์–‘์„ฑ๊ณผ ๋ณต์žก์„ฑ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ๊ฐ•๋ ฅํ•œ ๊ฐ์ฒด ์ธ์‹ ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๋Š” ๋ฐ ์žˆ์–ด ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค.

์ธ์šฉ ๋ฐ ๊ฐ์‚ฌ

์—ฐ๊ตฌ ๋˜๋Š” ๊ฐœ๋ฐœ ์ž‘์—…์— Caltech-101 ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ๋‹ค์Œ ๋…ผ๋ฌธ์„ ์ธ์šฉํ•ด ์ฃผ์„ธ์š”:

@article{fei2007learning,
  title={Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories},
  author={Fei-Fei, Li and Fergus, Rob and Perona, Pietro},
  journal={Computer vision and Image understanding},
  volume={106},
  number={1},
  pages={59--70},
  year={2007},
  publisher={Elsevier}
}

๋จธ์‹  ๋Ÿฌ๋‹ ๋ฐ ์ปดํ“จํ„ฐ ๋น„์ „ ์—ฐ๊ตฌ ์ปค๋ฎค๋‹ˆํ‹ฐ๋ฅผ ์œ„ํ•œ ๊ท€์ค‘ํ•œ ๋ฆฌ์†Œ์Šค์ธ Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๋งŒ๋“ค๊ณ  ์œ ์ง€ ๊ด€๋ฆฌํ•ด ์ฃผ์‹  Li Fei-Fei, Rob Fergus, Pietro Perona์—๊ฒŒ ๊ฐ์‚ฌ์˜ ๋ง์”€์„ ์ „ํ•ฉ๋‹ˆ๋‹ค. Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ์™€ ๊ทธ ์ œ์ž‘์ž์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ ์›น์‚ฌ์ดํŠธ๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ

๋จธ์‹  ๋Ÿฌ๋‹์—์„œ Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์–ด๋–ค ์šฉ๋„๋กœ ์‚ฌ์šฉ๋˜๋‚˜์š”?

Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋ฌผ์ฒด ์ธ์‹ ์ž‘์—…์„ ์œ„ํ•œ ๋จธ์‹  ๋Ÿฌ๋‹์—์„œ ๋„๋ฆฌ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. 101๊ฐœ ์นดํ…Œ๊ณ ๋ฆฌ์— ๊ฑธ์ณ ์•ฝ 9,000๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ๋ฌผ์ฒด ์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ๊นŒ๋‹ค๋กœ์šด ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์›๋“ค์€ ์ปดํ“จํ„ฐ ๋น„์ „์—์„œ ํŠนํžˆ ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง(CNN)๊ณผ ์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹ (SVM)์„ ๋น„๋กฏํ•œ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ  ํ…Œ์ŠคํŠธํ•˜๋Š” ๋ฐ ์ด ๋ฐ์ดํ„ฐ์…‹์„ ํ™œ์šฉํ•ฉ๋‹ˆ๋‹ค.

Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ Ultralytics YOLO ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•˜๋‚˜์š”?

Ultralytics YOLO ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•œ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ์ œ๊ณต๋œ ์ฝ”๋“œ ์Šค๋‹ˆํŽซ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, 100๊ฐœ์˜ ์—ํฌํฌ์— ๋Œ€ํ•ด ํ›ˆ๋ จํ•ฉ๋‹ˆ๋‹ค:

์—ด์ฐจ ์˜ˆ์‹œ

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-cls.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="caltech101", epochs=100, imgsz=416)
# Start training from a pretrained *.pt model
yolo classify train data=caltech101 model=yolov8n-cls.pt epochs=100 imgsz=416

์ž์„ธํ•œ ์ธ์ˆ˜ ๋ฐ ์˜ต์…˜์€ ๋ชจ๋ธ ๊ต์œก ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ฃผ์š” ๊ธฐ๋Šฅ์€ ๋ฌด์—‡์ธ๊ฐ€์š”?

The Caltech-101 dataset includes:

  • Around 9,000 color images across 101 categories.
  • Categories covering a diverse range of objects, including animals, vehicles, and household items.
  • Variable number of images per category, typically between 40 and 800.
  • Variable image sizes, with most being medium resolution.

์ด๋Ÿฌํ•œ ๊ธฐ๋Šฅ ๋•๋ถ„์— ๋จธ์‹ ๋Ÿฌ๋‹ ๋ฐ ์ปดํ“จํ„ฐ ๋น„์ „์—์„œ ๊ฐ์ฒด ์ธ์‹ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ  ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ํƒ์›”ํ•œ ์„ ํƒ์ด ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๋‚ด ์—ฐ๊ตฌ์—์„œ Caltech-101 ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ์ธ์šฉํ•ด์•ผ ํ•˜๋Š” ์ด์œ ๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”?

์—ฐ๊ตฌ์— Caltech-101 ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ์ธ์šฉํ•˜๋ฉด ์ž‘์„ฑ์ž์˜ ๊ณตํ—Œ์„ ์ธ์ •ํ•˜๊ณ  ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋‹ค๋ฅธ ์‚ฌ๋žŒ๋“ค์—๊ฒŒ ์ฐธ์กฐ๋ฅผ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ถŒ์žฅ ์ธ์šฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

@article{fei2007learning,
  title={Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories},
  author={Fei-Fei, Li and Fergus, Rob and Perona, Pietro},
  journal={Computer vision and Image understanding},
  volume={106},
  number={1},
  pages={59--70},
  year={2007},
  publisher={Elsevier}
}

์ธ์šฉ์€ ํ•™์ˆ  ์ž‘์—…์˜ ๋ฌด๊ฒฐ์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋˜๋ฉฐ ๋™๋ฃŒ๋“ค์ด ์›๋ณธ ๋ฆฌ์†Œ์Šค๋ฅผ ์ฐพ๋Š” ๋ฐ ๋„์›€์„ ์ค๋‹ˆ๋‹ค.

Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋ชจ๋ธ ํ•™์Šต์— Ultralytics HUB๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‚˜์š”?

์˜ˆ, Caltech-101 ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋ชจ๋ธ ํ•™์Šต์„ ์œ„ํ•ด Ultralytics HUB๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Ultralytics HUB๋Š” ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ด€๋ฆฌ, ๋ชจ๋ธ ํ•™์Šต, ๋ฐฐํฌ๋ฅผ ์œ„ํ•œ ์ง๊ด€์ ์ธ ํ”Œ๋žซํผ์„ ์ œ๊ณตํ•˜์—ฌ ๋ณต์žกํ•œ ์ฝ”๋”ฉ ์—†์ด๋„ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๊ด€๋ฆฌํ•˜๊ณ  ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ž์„ธํ•œ ๊ฐ€์ด๋“œ๋Š” Ultralytics HUB ๋ธ”๋กœ๊ทธ ๊ฒŒ์‹œ๋ฌผ์—์„œ ์‚ฌ์šฉ์ž ์ง€์ • ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ฐธ์กฐํ•˜์„ธ์š”.


๐Ÿ“… Created 10 months ago โœ๏ธ Updated 13 days ago

๋Œ“๊ธ€