์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ

COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ

COCO (Common Objects in Context) ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋Œ€๊ทœ๋ชจ ๊ฐ์ฒด ๊ฐ์ง€, ๋ถ„ํ•  ๋ฐ ์บก์…˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค. ๋‹ค์–‘ํ•œ ๊ฐ์ฒด ๋ฒ”์ฃผ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์žฅ๋ คํ•˜๊ธฐ ์œ„ํ•ด ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ ์ผ๋ฐ˜์ ์œผ๋กœ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ชจ๋ธ์„ ๋ฒค์น˜๋งˆํ‚นํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ๊ฐ์ฒด ๊ฐ์ง€, ๋ถ„ํ• , ํฌ์ฆˆ ์ถ”์ • ์ž‘์—…์„ ํ•˜๋Š” ์—ฐ๊ตฌ์ž์™€ ๊ฐœ๋ฐœ์ž์—๊ฒŒ ํ•„์ˆ˜์ ์ธ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค.



Watch: Ultralytics COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ฐœ์š”

COCO ์‚ฌ์ „ ํ•™์Šต ๋ชจ๋ธ

๋ชจ๋ธ ํฌ๊ธฐ
(ํ”ฝ์…€)
mAPval
50-95
์†๋„
CPU ONNX
(ms)
์†๋„
T4TensorRT10
(ms)
๋งค๊ฐœ๋ณ€์ˆ˜
(M)
FLOPs
(B)
YOLO11n 640 39.5 56.1 ยฑ 0.8 1.5 ยฑ 0.0 2.6 6.5
YOLO11s 640 47.0 90.0 ยฑ 1.2 2.5 ยฑ 0.0 9.4 21.5
YOLO11m 640 51.5 183.2 ยฑ 2.0 4.7 ยฑ 0.1 20.1 68.0
YOLO11l 640 53.4 238.6 ยฑ 1.4 6.2 ยฑ 0.1 25.3 86.9
YOLO11x 640 54.7 462.8 ยฑ 6.7 11.3 ยฑ 0.2 56.9 194.9

์ฃผ์š” ๊ธฐ๋Šฅ

  • COCO์—๋Š” 33๋งŒ ๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์œผ๋ฉฐ, 20๋งŒ ๊ฐœ์˜ ์ด๋ฏธ์ง€์—๋Š” ๊ฐ์ฒด ๊ฐ์ง€, ๋ถ„ํ•  ๋ฐ ์บก์…˜ ์ž‘์—…์„ ์œ„ํ•œ ์ฃผ์„์ด ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์ž๋™์ฐจ, ์ž์ „๊ฑฐ, ๋™๋ฌผ๊ณผ ๊ฐ™์€ ์ผ๋ฐ˜์ ์ธ ๊ฐ์ฒด์™€ ์šฐ์‚ฐ, ํ•ธ๋“œ๋ฐฑ, ์Šคํฌ์ธ  ์žฅ๋น„์™€ ๊ฐ™์€ ๋ณด๋‹ค ๊ตฌ์ฒด์ ์ธ ์นดํ…Œ๊ณ ๋ฆฌ๋ฅผ ํฌํ•จํ•œ 80๊ฐœ์˜ ๊ฐ์ฒด ์นดํ…Œ๊ณ ๋ฆฌ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์ฃผ์„์—๋Š” ๊ฐœ์ฒด ๊ฒฝ๊ณ„ ์ƒ์ž, ๋ถ„ํ•  ๋งˆ์Šคํฌ ๋ฐ ๊ฐ ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์บก์…˜์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค.
  • COCO๋Š” ๊ฐ์ฒด ๊ฐ์ง€๋ฅผ ์œ„ํ•œ ํ‰๊ท  ํ‰๊ท  ์ •๋ฐ€๋„ (mAP), ์„ธ๋ถ„ํ™” ์ž‘์—…์„ ์œ„ํ•œ ํ‰๊ท  ํ‰๊ท  ์ •ํ™•๋„ (mAR) ๋“ฑ ํ‘œ์ค€ํ™”๋œ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์ œ๊ณตํ•˜๋ฏ€๋กœ ๋ชจ๋ธ ์„ฑ๋Šฅ์„ ๋น„๊ตํ•˜๋Š” ๋ฐ ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค.

๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์กฐ

COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์„ธ ๊ฐœ์˜ ํ•˜์œ„ ์ง‘ํ•ฉ์œผ๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค:

  1. Train2017: ์ด ํ•˜์œ„ ์ง‘ํ•ฉ์—๋Š” ๊ฐ์ฒด ๊ฐ์ง€, ๋ถ„ํ•  ๋ฐ ์บก์…˜ ๋ชจ๋ธ ํ•™์Šต์„ ์œ„ํ•œ 118๋งŒ ๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
  2. Val2017: ์ด ํ•˜์œ„ ์ง‘ํ•ฉ์—๋Š” ๋ชจ๋ธ ํ•™์Šต ์ค‘ ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ ๋ชฉ์ ์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” 5K ์ด๋ฏธ์ง€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
  3. Test2017: ์ด ํ•˜์œ„ ์ง‘ํ•ฉ์€ ํ•™์Šต๋œ ๋ชจ๋ธ์„ ํ…Œ์ŠคํŠธํ•˜๊ณ  ๋ฒค์น˜๋งˆํ‚นํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” 20K ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค. ์ด ํ•˜์œ„ ์ง‘ํ•ฉ์— ๋Œ€ํ•œ ์‹ค์ธก ์ž๋ฃŒ ์ฃผ์„์€ ๊ณต๊ฐœ๋˜์ง€ ์•Š์œผ๋ฉฐ, ๊ฒฐ๊ณผ๋Š” ์„ฑ๋Šฅ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด COCO ํ‰๊ฐ€ ์„œ๋ฒ„์— ์ œ์ถœ๋ฉ๋‹ˆ๋‹ค.

์• ํ”Œ๋ฆฌ์ผ€์ด์…˜

COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๊ฐ์ฒด ๊ฐ์ง€(์˜ˆ: YOLO, Faster R-CNN, SSD), ์ธ์Šคํ„ด์Šค ๋ถ„ํ•  (์˜ˆ: Mask R-CNN), ํ‚คํฌ์ธํŠธ ๊ฐ์ง€(์˜ˆ: OpenPose)์—์„œ ๋”ฅ ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ  ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ๋„๋ฆฌ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋‹ค์–‘ํ•œ ๊ฐ์ฒด ์นดํ…Œ๊ณ ๋ฆฌ, ์ˆ˜๋งŽ์€ ์ฃผ์„์ด ๋‹ฌ๋ฆฐ ์ด๋ฏธ์ง€, ํ‘œ์ค€ํ™”๋œ ํ‰๊ฐ€ ๋ฉ”ํŠธ๋ฆญ์€ ์ปดํ“จํ„ฐ ๋น„์ „ ์—ฐ๊ตฌ์ž์™€ ์‹ค๋ฌด์ž์—๊ฒŒ ํ•„์ˆ˜์ ์ธ ๋ฆฌ์†Œ์Šค์ž…๋‹ˆ๋‹ค.

๋ฐ์ดํ„ฐ ์„ธํŠธ YAML

๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์„ฑ์„ ์ •์˜ํ•˜๋Š” ๋ฐ๋Š” YAML(๋˜ ๋‹ค๋ฅธ ๋งˆํฌ์—… ์–ธ์–ด) ํŒŒ์ผ์ด ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ฒฝ๋กœ, ํด๋ž˜์Šค ๋ฐ ๊ธฐํƒ€ ๊ด€๋ จ ์ •๋ณด์— ๋Œ€ํ•œ ์ •๋ณด๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ฒฝ์šฐ, ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ coco.yaml ํŒŒ์ผ์€ ๋‹ค์Œ ์œ„์น˜์—์„œ ์œ ์ง€๋ฉ๋‹ˆ๋‹ค. https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml.

ultralytics/cfg/datasets/coco.yaml

# Ultralytics YOLO ๐Ÿš€, AGPL-3.0 license
# COCO 2017 dataset https://cocodataset.org by Microsoft
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco.yaml
# parent
# โ”œโ”€โ”€ ultralytics
# โ””โ”€โ”€ datasets
#     โ””โ”€โ”€ coco  โ† downloads here (20.1 GB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794

# Classes
names:
  0: person
  1: bicycle
  2: car
  3: motorcycle
  4: airplane
  5: bus
  6: train
  7: truck
  8: boat
  9: traffic light
  10: fire hydrant
  11: stop sign
  12: parking meter
  13: bench
  14: bird
  15: cat
  16: dog
  17: horse
  18: sheep
  19: cow
  20: elephant
  21: bear
  22: zebra
  23: giraffe
  24: backpack
  25: umbrella
  26: handbag
  27: tie
  28: suitcase
  29: frisbee
  30: skis
  31: snowboard
  32: sports ball
  33: kite
  34: baseball bat
  35: baseball glove
  36: skateboard
  37: surfboard
  38: tennis racket
  39: bottle
  40: wine glass
  41: cup
  42: fork
  43: knife
  44: spoon
  45: bowl
  46: banana
  47: apple
  48: sandwich
  49: orange
  50: broccoli
  51: carrot
  52: hot dog
  53: pizza
  54: donut
  55: cake
  56: chair
  57: couch
  58: potted plant
  59: bed
  60: dining table
  61: toilet
  62: tv
  63: laptop
  64: mouse
  65: remote
  66: keyboard
  67: cell phone
  68: microwave
  69: oven
  70: toaster
  71: sink
  72: refrigerator
  73: book
  74: clock
  75: vase
  76: scissors
  77: teddy bear
  78: hair drier
  79: toothbrush

# Download script/URL (optional)
download: |
  from ultralytics.utils.downloads import download
  from pathlib import Path

  # Download labels
  segments = True  # segment or box labels
  dir = Path(yaml['path'])  # dataset root dir
  url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
  urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')]  # labels
  download(urls, dir=dir.parent)
  # Download data
  urls = ['http://images.cocodataset.org/zips/train2017.zip',  # 19G, 118k images
          'http://images.cocodataset.org/zips/val2017.zip',  # 1G, 5k images
          'http://images.cocodataset.org/zips/test2017.zip']  # 7G, 41k images (optional)
  download(urls, dir=dir / 'images', threads=3)

์‚ฌ์šฉ๋ฒ•

์ด๋ฏธ์ง€ ํฌ๊ธฐ๊ฐ€ 640์ธ 100๊ฐœ์˜ ์—ํฌํฌ์— ๋Œ€ํ•ด COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ YOLO11n ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ๋‹ค์Œ ์ฝ”๋“œ ์Šค๋‹ˆํŽซ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ธ์ˆ˜์˜ ์ „์ฒด ๋ชฉ๋ก์€ ๋ชจ๋ธ ํ•™์Šต ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์—ด์ฐจ ์˜ˆ์‹œ

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=coco.yaml model=yolo11n.pt epochs=100 imgsz=640

์ƒ˜ํ”Œ ์ด๋ฏธ์ง€ ๋ฐ ์ฃผ์„

COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ์—๋Š” ๋‹ค์–‘ํ•œ ๊ฐ์ฒด ๋ฒ”์ฃผ์™€ ๋ณต์žกํ•œ ์žฅ๋ฉด์ด ํฌํ•จ๋œ ๋‹ค์–‘ํ•œ ์ด๋ฏธ์ง€ ์„ธํŠธ๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ด๋ฏธ์ง€์™€ ํ•ด๋‹น ์ฃผ์„์˜ ๋ช‡ ๊ฐ€์ง€ ์˜ˆ์ž…๋‹ˆ๋‹ค:

๋ฐ์ดํ„ฐ ์„ธํŠธ ์ƒ˜ํ”Œ ์ด๋ฏธ์ง€

  • ๋ชจ์ž์ดํฌ ์ด๋ฏธ์ง€: ์ด ์ด๋ฏธ์ง€๋Š” ๋ชจ์ž์ดํฌ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋œ ํ›ˆ๋ จ ๋ฐฐ์น˜์˜ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค. ๋ชจ์ž์ดํฌ๋Š” ์—ฌ๋Ÿฌ ์ด๋ฏธ์ง€๋ฅผ ํ•˜๋‚˜์˜ ์ด๋ฏธ์ง€๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ฐ ํ›ˆ๋ จ ๋ฐฐ์น˜ ๋‚ด์—์„œ ๋‹ค์–‘ํ•œ ๊ฐœ์ฒด์™€ ์žฅ๋ฉด์„ ๋Š˜๋ฆฌ๊ธฐ ์œ„ํ•ด ํ›ˆ๋ จ ์ค‘์— ์‚ฌ์šฉ๋˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๊ฐ์ฒด ํฌ๊ธฐ, ์ข…ํšก๋น„ ๋ฐ ์ปจํ…์ŠคํŠธ์— ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๋ชจ๋ธ์˜ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด ์˜ˆ๋Š” COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ํฌํ•จ๋œ ์ด๋ฏธ์ง€์˜ ๋‹ค์–‘์„ฑ๊ณผ ๋ณต์žก์„ฑ, ๊ทธ๋ฆฌ๊ณ  ํ•™์Šต ๊ณผ์ •์—์„œ ๋ชจ์ž์ดํฌ ์‚ฌ์šฉ์˜ ์ด์ ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

์ธ์šฉ ๋ฐ ๊ฐ์‚ฌ

์—ฐ๊ตฌ ๋˜๋Š” ๊ฐœ๋ฐœ ์ž‘์—…์— COCO ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ๋‹ค์Œ ๋…ผ๋ฌธ์„ ์ธ์šฉํ•ด ์ฃผ์„ธ์š”:

@misc{lin2015microsoft,
      title={Microsoft COCO: Common Objects in Context},
      author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollรกr},
      year={2015},
      eprint={1405.0312},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

์ปดํ“จํ„ฐ ๋น„์ „ ์ปค๋ฎค๋‹ˆํ‹ฐ๋ฅผ ์œ„ํ•ด ์ด ๊ท€์ค‘ํ•œ ๋ฆฌ์†Œ์Šค๋ฅผ ๋งŒ๋“ค๊ณ  ์œ ์ง€ ๊ด€๋ฆฌํ•ด ์ฃผ์‹  COCO ์ปจ์†Œ์‹œ์—„์— ๊ฐ์‚ฌ์˜ ๋ง์”€์„ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ ๋ฐ ์ œ์ž‘์ž์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ ์›น์‚ฌ์ดํŠธ๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ

COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋ฌด์—‡์ด๋ฉฐ ์ปดํ“จํ„ฐ ๋น„์ „์— ์ค‘์š”ํ•œ ์ด์œ ๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”?

COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ (Common Objects in Context)๋Š” ๊ฐ์ฒด ๊ฐ์ง€, ์„ธ๋ถ„ํ™”, ์บก์…˜์— ์‚ฌ์šฉ๋˜๋Š” ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค. 80๊ฐœ ๊ฐ์ฒด ๋ฒ”์ฃผ์— ๋Œ€ํ•œ ์ž์„ธํ•œ ์ฃผ์„์ด ํฌํ•จ๋œ 330๋งŒ ๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ์ปดํ“จํ„ฐ ๋น„์ „ ๋ชจ๋ธ์„ ๋ฒค์น˜๋งˆํ‚นํ•˜๊ณ  ํ›ˆ๋ จํ•˜๋Š” ๋ฐ ํ•„์ˆ˜์ ์ž…๋‹ˆ๋‹ค. ์—ฐ๊ตฌ์ž๋“ค์€ ๋‹ค์–‘ํ•œ ์นดํ…Œ๊ณ ๋ฆฌ์™€ ํ‰๊ท  ํ‰๊ท  ์ •๋ฐ€๋„ (mAP)์™€ ๊ฐ™์€ ํ‘œ์ค€ํ™”๋œ ํ‰๊ฐ€ ์ง€ํ‘œ๋กœ ์ธํ•ด COCO๋ฅผ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค.

COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ YOLO ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•˜๋‚˜์š”?

COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ YOLO11 ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๋ ค๋ฉด ๋‹ค์Œ ์ฝ”๋“œ ์Šค๋‹ˆํŽซ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

์—ด์ฐจ ์˜ˆ์‹œ

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=coco.yaml model=yolo11n.pt epochs=100 imgsz=640

์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ธ์ˆ˜์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ ๊ต์œก ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ฃผ์š” ํŠน์ง•์€ ๋ฌด์—‡์ธ๊ฐ€์š”?

COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ์—๋Š” ๋‹ค์Œ์ด ํฌํ•จ๋ฉ๋‹ˆ๋‹ค:

  • ๋ฌผ์ฒด ๊ฐ์ง€, ๋ถ„ํ•  ๋ฐ ์บก์…˜์— ๋Œ€ํ•œ ์ฃผ์„์ด ๋‹ฌ๋ฆฐ 330๋งŒ ๊ฐœ์˜ ์ด๋ฏธ์ง€์™€ 200๋งŒ ๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์ž๋™์ฐจ, ๋™๋ฌผ๊ณผ ๊ฐ™์€ ์ผ๋ฐ˜์ ์ธ ๋ฌผ๊ฑด๋ถ€ํ„ฐ ํ•ธ๋“œ๋ฐฑ, ์Šคํฌ์ธ  ์žฅ๋น„์™€ ๊ฐ™์€ ํŠน์ • ๋ฌผ๊ฑด๊นŒ์ง€ 80๊ฐœ์˜ ๋ฌผ๊ฑด ์นดํ…Œ๊ณ ๋ฆฌ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ๊ฐ์ฒด ๊ฐ์ง€(mAP) ๋ฐ ์„ธ๋ถ„ํ™”(ํ‰๊ท  ํ‰๊ท  ํšŒ์ƒ๋ฅ , mAR)๋ฅผ ์œ„ํ•œ ํ‘œ์ค€ํ™”๋œ ํ‰๊ฐ€ ์ง€ํ‘œ.
  • ๋‹ค์–‘ํ•œ ์˜ค๋ธŒ์ ํŠธ ํฌ๊ธฐ์™€ ์ปจํ…์ŠคํŠธ์—์„œ ๋ชจ๋ธ ์ผ๋ฐ˜ํ™”๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ํ›ˆ๋ จ ๋ฐฐ์น˜์— ๋ชจ์ž์ดํฌ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค.

COCO ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ•™์Šต๋œ ์‚ฌ์ „ ํ•™์Šต๋œ YOLO11 ๋ชจ๋ธ์€ ์–ด๋””์—์„œ ์ฐพ์„ ์ˆ˜ ์žˆ๋‚˜์š”?

COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•œ ์‚ฌ์ „ ํ•™์Šต๋œ YOLO11 ๋ชจ๋ธ์€ ๋ฌธ์„œ์— ์ œ๊ณต๋œ ๋งํฌ์—์„œ ๋‹ค์šด๋กœ๋“œํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

์ด๋Ÿฌํ•œ ๋ชจ๋ธ์€ ํฌ๊ธฐ, ๋งต, ์ถ”๋ก  ์†๋„๊ฐ€ ๋‹ค์–‘ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์„ฑ๋Šฅ ๋ฐ ๋ฆฌ์†Œ์Šค ์š”๊ตฌ ์‚ฌํ•ญ์— ๋งž๋Š” ์˜ต์…˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์–ด๋–ป๊ฒŒ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์œผ๋ฉฐ ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉํ•˜๋‚˜์š”?

COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์„ธ ๊ฐœ์˜ ํ•˜์œ„ ์ง‘ํ•ฉ์œผ๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค:

  1. Train2017: ๊ต์œก์šฉ ์ด๋ฏธ์ง€ 118๋งŒ ๊ฐœ.
  2. Val2017: ๊ต์œก ์ค‘ ๊ฒ€์ฆ์„ ์œ„ํ•œ 5K ์ด๋ฏธ์ง€.
  3. Test2017: ํ•™์Šต๋œ ๋ชจ๋ธ์„ ๋ฒค์น˜๋งˆํ‚นํ•˜๊ธฐ ์œ„ํ•œ 20K ์ด๋ฏธ์ง€. ์„ฑ๋Šฅ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด COCO ํ‰๊ฐ€ ์„œ๋ฒ„์— ๊ฒฐ๊ณผ๋ฅผ ์ œ์ถœํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ YAML ๊ตฌ์„ฑ ํŒŒ์ผ์€ ๊ฒฝ๋กœ, ํด๋ž˜์Šค ๋ฐ ๋ฐ์ดํ„ฐ ์„ธํŠธ ์„ธ๋ถ€ ์ •๋ณด๋ฅผ ์ •์˜ํ•˜๋Š” coco.yaml์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๐Ÿ“…1 ๋…„ ์ „ ์ƒ์„ฑ๋จ โœ๏ธ 2๊ฐœ์›” ์ „ ์—…๋ฐ์ดํŠธ๋จ

๋Œ“๊ธ€