xView ๋ฐ์ดํฐ ์ธํธ
xView ๋ฐ์ดํฐ ์ธํธ๋ ์ ์ธ๊ณ์ ๋ณต์กํ ์ฅ๋ฉด์ ๋ฐ์ด๋ฉ ๋ฐ์ค๋ฅผ ์ฌ์ฉํด ์ฃผ์์ด ๋ฌ๋ฆฐ ์ด๋ฏธ์ง๊ฐ ํฌํจ๋ ๊ณต๊ฐ์ ์ผ๋ก ์ฌ์ฉ ๊ฐ๋ฅํ ๊ฐ์ฅ ํฐ ์ค๋ฒํค๋ ์ด๋ฏธ์ง ๋ฐ์ดํฐ ์ธํธ ์ค ํ๋์ ๋๋ค. xView ๋ฐ์ดํฐ ์ธํธ์ ๋ชฉํ๋ ๋ค ๊ฐ์ง ์ปดํจํฐ ๋น์ ๋ถ์ผ์ ๋ฐ์ ์ ๊ฐ์ํํ๋ ๊ฒ์ ๋๋ค:
- ํ์ง๋ฅผ ์ํ ์ต์ ํด์๋๋ฅผ ๋ฎ์ถฅ๋๋ค.
- ํ์ต ํจ์จ์ฑ์ ๊ฐ์ ํ์ธ์.
- ๋ ๋ง์ ๊ฐ์ฒด ํด๋์ค๋ฅผ ๊ฒ์ํ ์ ์์ต๋๋ค.
- ์ธ๋ถํ๋ ํด๋์ค์ ๋ํ ํ์ง ๊ธฐ๋ฅ์ ๊ฐ์ ํฉ๋๋ค.
xView๋ COCO(Common Objects in Context)์ ๊ฐ์ ๊ณผ์ ์ ์ฑ๊ณต์ ๋ฐํ์ผ๋ก ์ปดํจํฐ ๋น์ ์ ํ์ฉํ์ฌ ์ฐ์ฃผ์์ ์ ์ ๋ ๋ง์ ์์ ์ด๋ฏธ์ง๋ฅผ ๋ถ์ํ์ฌ ์๊ฐ ์ธ๊ณ๋ฅผ ์๋ก์ด ๋ฐฉ์์ผ๋ก ์ดํดํ๊ณ ๋ค์ํ ์ค์ํ ์ ํ๋ฆฌ์ผ์ด์ ์ ์ฒ๋ฆฌํ๋ ๊ฒ์ ๋ชฉํ๋ก ํฉ๋๋ค.
์ฃผ์ ๊ธฐ๋ฅ
- xView์๋ 60๊ฐ ํด๋์ค์ ๊ฑธ์ณ 100๋ง ๊ฐ ์ด์์ ์ค๋ธ์ ํธ ์ธ์คํด์ค๊ฐ ํฌํจ๋์ด ์์ต๋๋ค.
- ์ด ๋ฐ์ดํฐ ์ธํธ์ ํด์๋๋ 0.3๋ฏธํฐ๋ก, ๋๋ถ๋ถ์ ๊ณต๊ฐ ์์ฑ ์ด๋ฏธ์ง ๋ฐ์ดํฐ ์ธํธ๋ณด๋ค ๋ ๋์ ํด์๋์ ์ด๋ฏธ์ง๋ฅผ ์ ๊ณตํฉ๋๋ค.
- xView๋ ๋ฐ์ด๋ฉ ๋ฐ์ค ์ฃผ์์ด ์๋ ์๊ณ ํฌ๊ทํ๋ฉฐ ์ธ๋ถํ๋ ๋ค์ํ ์ ํ์ ์ค๋ธ์ ํธ ์ปฌ๋ ์ ์ ์ ๊ณตํฉ๋๋ค.
- TensorFlow ๊ฐ์ฒด ๊ฐ์ง API๋ฅผ ์ฌ์ฉํ์ฌ ์ฌ์ ํ์ต๋ ๊ธฐ์ค ๋ชจ๋ธ๊ณผ ํจ๊ป ์ ๊ณต๋ฉ๋๋ค. PyTorch.
๋ฐ์ดํฐ ์ธํธ ๊ตฌ์กฐ
xView ๋ฐ์ดํฐ ์ธํธ๋ ์๋๋ทฐ-3 ์์ฑ์์ 0.3m์ ์ง์ ์ํ ๊ฑฐ๋ฆฌ์์ ์์งํ ์์ฑ ์ด๋ฏธ์ง๋ก ๊ตฌ์ฑ๋์ด ์์ต๋๋ค. ์ฌ๊ธฐ์๋ 1,400kmยฒ ์ด์์ ์ด๋ฏธ์ง์ 60๊ฐ ํด๋์ค์ ๊ฑธ์ณ 100๋ง ๊ฐ ์ด์์ ๋ฌผ์ฒด๊ฐ ํฌํจ๋์ด ์์ต๋๋ค.
์ ํ๋ฆฌ์ผ์ด์
xView ๋ฐ์ดํฐ ์ธํธ๋ ์ค๋ฒํค๋ ์ด๋ฏธ์ง์์ ๋ฌผ์ฒด ๊ฐ์ง๋ฅผ ์ํ ๋ฅ ๋ฌ๋ ๋ชจ๋ธ์ ํ๋ จํ๊ณ ํ๊ฐํ๋ ๋ฐ ๋๋ฆฌ ์ฌ์ฉ๋ฉ๋๋ค. ์ด ๋ฐ์ดํฐ ์ธํธ์ ๋ค์ํ ๊ฐ์ฒด ํด๋์ค์ ๊ณ ํด์๋ ์ด๋ฏธ์ง๋ ์ปดํจํฐ ๋น์ ๋ถ์ผ, ํนํ ์์ฑ ์ด๋ฏธ์ง ๋ถ์์ ์ํ ์ฐ๊ตฌ์์ ์ค๋ฌด์์๊ฒ ์ ์ฉํ ๋ฆฌ์์ค์ ๋๋ค.
๋ฐ์ดํฐ ์ธํธ YAML
๋ฐ์ดํฐ ์ธํธ ๊ตฌ์ฑ์ ์ ์ํ๋ ๋ฐ๋ YAML(๋ ๋ค๋ฅธ ๋งํฌ์
์ธ์ด) ํ์ผ์ด ์ฌ์ฉ๋ฉ๋๋ค. ์ฌ๊ธฐ์๋ ๋ฐ์ดํฐ ์ธํธ์ ๊ฒฝ๋ก, ํด๋์ค ๋ฐ ๊ธฐํ ๊ด๋ จ ์ ๋ณด์ ๋ํ ์ ๋ณด๊ฐ ํฌํจ๋์ด ์์ต๋๋ค. xView ๋ฐ์ดํฐ ์ธํธ์ ๊ฒฝ์ฐ, ๋ฐ์ดํฐ ์ธํธ์ xView.yaml
ํ์ผ์ ๋ค์ ์์น์์ ์ ์ง๋ฉ๋๋ค. https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/xView.yaml.
ultralytics/cfg/datasets/xView.yaml
# Ultralytics YOLO ๐, AGPL-3.0 license
# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! --------
# Documentation: https://docs.ultralytics.com/datasets/detect/xview/
# Example usage: yolo train data=xView.yaml
# parent
# โโโ ultralytics
# โโโ datasets
# โโโ xView โ downloads here (20.7 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/xView # dataset root dir
train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
# Classes
names:
0: Fixed-wing Aircraft
1: Small Aircraft
2: Cargo Plane
3: Helicopter
4: Passenger Vehicle
5: Small Car
6: Bus
7: Pickup Truck
8: Utility Truck
9: Truck
10: Cargo Truck
11: Truck w/Box
12: Truck Tractor
13: Trailer
14: Truck w/Flatbed
15: Truck w/Liquid
16: Crane Truck
17: Railway Vehicle
18: Passenger Car
19: Cargo Car
20: Flat Car
21: Tank car
22: Locomotive
23: Maritime Vessel
24: Motorboat
25: Sailboat
26: Tugboat
27: Barge
28: Fishing Vessel
29: Ferry
30: Yacht
31: Container Ship
32: Oil Tanker
33: Engineering Vehicle
34: Tower crane
35: Container Crane
36: Reach Stacker
37: Straddle Carrier
38: Mobile Crane
39: Dump Truck
40: Haul Truck
41: Scraper/Tractor
42: Front loader/Bulldozer
43: Excavator
44: Cement Mixer
45: Ground Grader
46: Hut/Tent
47: Shed
48: Building
49: Aircraft Hangar
50: Damaged Building
51: Facility
52: Construction Site
53: Vehicle Lot
54: Helipad
55: Storage Tank
56: Shipping container lot
57: Shipping Container
58: Pylon
59: Tower
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
import json
import os
from pathlib import Path
import numpy as np
from PIL import Image
from tqdm import tqdm
from ultralytics.data.utils import autosplit
from ultralytics.utils.ops import xyxy2xywhn
def convert_labels(fname=Path('xView/xView_train.geojson')):
# Convert xView geoJSON labels to YOLO format
path = fname.parent
with open(fname) as f:
print(f'Loading {fname}...')
data = json.load(f)
# Make dirs
labels = Path(path / 'labels' / 'train')
os.system(f'rm -rf {labels}')
labels.mkdir(parents=True, exist_ok=True)
# xView classes 11-94 to 0-59
xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
shapes = {}
for feature in tqdm(data['features'], desc=f'Converting {fname}'):
p = feature['properties']
if p['bounds_imcoords']:
id = p['image_id']
file = path / 'train_images' / id
if file.exists(): # 1395.tif missing
try:
box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
cls = p['type_id']
cls = xview_class2index[int(cls)] # xView class to 0-60
assert 59 >= cls >= 0, f'incorrect class index {cls}'
# Write YOLO label
if id not in shapes:
shapes[id] = Image.open(file).size
box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
with open((labels / id).with_suffix('.txt'), 'a') as f:
f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt
except Exception as e:
print(f'WARNING: skipping one label for {file}: {e}')
# Download manually from https://challenge.xviewdataset.org
dir = Path(yaml['path']) # dataset root dir
# urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels
# 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images
# 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels)
# download(urls, dir=dir)
# Convert labels
convert_labels(dir / 'xView_train.geojson')
# Move images
images = Path(dir / 'images')
images.mkdir(parents=True, exist_ok=True)
Path(dir / 'train_images').rename(dir / 'images' / 'train')
Path(dir / 'val_images').rename(dir / 'images' / 'val')
# Split
autosplit(dir / 'images' / 'train')
์ฌ์ฉ๋ฒ
์ด๋ฏธ์ง ํฌ๊ธฐ๊ฐ 640์ธ xView ๋ฐ์ดํฐ ์ธํธ์์ 100๊ฐ์ ์ํฌํฌ์ ๋ํ ๋ชจ๋ธ์ ํ๋ จํ๋ ค๋ฉด ๋ค์ ์ฝ๋ ์กฐ๊ฐ์ ์ฌ์ฉํ ์ ์์ต๋๋ค. ์ฌ์ฉ ๊ฐ๋ฅํ ์ธ์์ ์ ์ฒด ๋ชฉ๋ก์ ๋ชจ๋ธ ํ์ต ํ์ด์ง๋ฅผ ์ฐธ์กฐํ์ธ์.
์ด์ฐจ ์์
์ํ ๋ฐ์ดํฐ ๋ฐ ์ฃผ์
xView ๋ฐ์ดํฐ ์ธํธ์๋ ๋ฐ์ด๋ฉ ๋ฐ์ค๋ฅผ ์ฌ์ฉํ์ฌ ์ฃผ์์ด ๋ฌ๋ฆฐ ๋ค์ํ ๊ฐ์ฒด ์งํฉ์ด ํฌํจ๋ ๊ณ ํด์๋ ์์ฑ ์ด๋ฏธ์ง๊ฐ ํฌํจ๋์ด ์์ต๋๋ค. ๋ค์์ ๋ฐ์ดํฐ ์ธํธ์ ๋ฐ์ดํฐ์ ํด๋น ์ฃผ์์ ๋ช ๊ฐ์ง ์์ ๋๋ค:
- ์ค๋ฒํค๋ ์ด๋ฏธ์ง: ์ด ์ด๋ฏธ์ง๋ ์ค๋ฒํค๋ ์ด๋ฏธ์ง์์ ๋ฌผ์ฒด์ ๊ฒฝ๊ณ ์์๊ฐ ์ฃผ์์ผ๋ก ํ์๋ ๋ฌผ์ฒด ๊ฐ์ง์ ์๋ฅผ ๋ณด์ฌ์ค๋๋ค. ์ด ๋ฐ์ดํฐ ์ธํธ๋ ์ด ์์ ์ ์ํ ๋ชจ๋ธ์ ์ฝ๊ฒ ๊ฐ๋ฐํ ์ ์๋๋ก ๊ณ ํด์๋ ์์ฑ ์ด๋ฏธ์ง๋ฅผ ์ ๊ณตํฉ๋๋ค.
์ด ์๋ xView ๋ฐ์ดํฐ ์ธํธ์ ํฌํจ๋ ๋ฐ์ดํฐ์ ๋ค์์ฑ๊ณผ ๋ณต์ก์ฑ์ ๋ณด์ฌ์ฃผ๋ฉฐ ๋ฌผ์ฒด ๊ฐ์ง ์์ ์์ ๊ณ ํ์ง ์์ฑ ์ด๋ฏธ์ง์ ์ค์์ฑ์ ๊ฐ์กฐํฉ๋๋ค.
์ธ์ฉ ๋ฐ ๊ฐ์ฌ
์ฐ๊ตฌ ๋๋ ๊ฐ๋ฐ ์์ ์ xView ๋ฐ์ดํฐ์ธํธ๋ฅผ ์ฌ์ฉํ๋ ๊ฒฝ์ฐ ๋ค์ ๋ ผ๋ฌธ์ ์ธ์ฉํด ์ฃผ์ธ์:
@misc{lam2018xview,
title={xView: Objects in Context in Overhead Imagery},
author={Darius Lam and Richard Kuzma and Kevin McGee and Samuel Dooley and Michael Laielli and Matthew Klaric and Yaroslav Bulatov and Brendan McCord},
year={2018},
eprint={1802.07856},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
์ปดํจํฐ ๋น์ ์ฐ๊ตฌ ์ปค๋ฎค๋ํฐ์ ๊ท์คํ ๊ธฐ์ฌ๋ฅผ ํด์ฃผ์ ๊ตญ๋ฐฉ ํ์ ์ ๋ (DIU)๊ณผ xView ๋ฐ์ดํฐ ์ธํธ์ ์ ์์์๊ฒ ๊ฐ์ฌ์ ๋ง์์ ์ ํฉ๋๋ค. xView ๋ฐ์ดํฐ ์ธํธ์ ์ ์์์ ๋ํ ์์ธํ ๋ด์ฉ์ xView ๋ฐ์ดํฐ ์ธํธ ์น์ฌ์ดํธ๋ฅผ ์ฐธ์กฐํ์ธ์.
์์ฃผ ๋ฌป๋ ์ง๋ฌธ
xView ๋ฐ์ดํฐ ์ธํธ๋ ๋ฌด์์ด๋ฉฐ ์ปดํจํฐ ๋น์ ์ฐ๊ตฌ์ ์ด๋ป๊ฒ ๋์์ด ๋๋์?
xView ๋ฐ์ดํฐ ์ธํธ๋ 60๊ฐ ํด๋์ค์ ๊ฑธ์ณ 100๋ง ๊ฐ ์ด์์ ๊ฐ์ฒด ์ธ์คํด์ค๋ฅผ ํฌํจํ๋ ๊ณต๊ฐ์ ์ผ๋ก ์ฌ์ฉ ๊ฐ๋ฅํ ์ต๋ ๊ท๋ชจ์ ๊ณ ํด์๋ ์ค๋ฒํค๋ ์ด๋ฏธ์ง ์ปฌ๋ ์ ์ค ํ๋์ ๋๋ค. ํ์ง๋ฅผ ์ํ ์ต์ ํด์๋ ๊ฐ์, ํ์ต ํจ์จ์ฑ ํฅ์, ๋ ๋ง์ ๊ฐ์ฒด ํด๋์ค ๋ฐ๊ฒฌ, ์ธ๋ถํ๋ ๊ฐ์ฒด ํ์ง ๋ฐ์ ๋ฑ ์ปดํจํฐ ๋น์ ์ฐ๊ตฌ์ ๋ค์ํ ์ธก๋ฉด์ ํฅ์์ํค๊ธฐ ์ํด ์ค๊ณ๋์์ต๋๋ค.
Ultralytics YOLO ์ ์ฌ์ฉํ์ฌ xView ๋ฐ์ดํฐ ์ธํธ์์ ๋ชจ๋ธ์ ํ์ต์ํค๋ ค๋ฉด ์ด๋ป๊ฒ ํด์ผ ํ๋์?
Ultralytics YOLO ์ ์ฌ์ฉํ์ฌ xView ๋ฐ์ดํฐ ์ธํธ์์ ๋ชจ๋ธ์ ํ์ต์ํค๋ ค๋ฉด ๋ค์ ๋จ๊ณ๋ฅผ ๋ฐ๋ฅด์ธ์:
์ด์ฐจ ์์
์์ธํ ์ธ์ ๋ฐ ์ค์ ์ ๋ชจ๋ธ ๊ต์ก ํ์ด์ง๋ฅผ ์ฐธ์กฐํ์ธ์.
xView ๋ฐ์ดํฐ ์ธํธ์ ์ฃผ์ ๊ธฐ๋ฅ์ ๋ฌด์์ธ๊ฐ์?
xView ๋ฐ์ดํฐ ์ธํธ๋ ํฌ๊ด์ ์ธ ๊ธฐ๋ฅ์ผ๋ก ์ธํด ๋๋ณด์ ๋๋ค:
- 60๊ฐ ํด๋์ค์ ๊ฑธ์ณ 1๋ฐฑ๋ง ๊ฐ ์ด์์ ์ค๋ธ์ ํธ ์ธ์คํด์ค๊ฐ ์์ต๋๋ค.
- 0.3๋ฏธํฐ์ ๊ณ ํด์๋ ์ด๋ฏธ์ง.
- ์์ ๊ฐ์ฒด, ํฌ๊ท ๊ฐ์ฒด, ์ธ๋ฐํ ๊ฐ์ฒด ๋ฑ ๋ค์ํ ๊ฐ์ฒด ์ ํ์ ๋ชจ๋ ๋ฐ์ด๋ฉ ๋ฐ์ค๋ก ์ฃผ์์ ๋ฌ ์ ์์ต๋๋ค.
- ์์ ์ฌ์ ํ์ต๋ ๊ธฐ์ค ๋ชจ๋ธ ๋ฐ ์์ ๋ฅผ ์ฌ์ฉํ ์ ์์ต๋๋ค. TensorFlow ๋ฐ PyTorch ์์ ํ์ธํ ์ ์์ต๋๋ค.
xView์ ๋ฐ์ดํฐ ์ธํธ ๊ตฌ์กฐ๋ ๋ฌด์์ด๋ฉฐ ์ด๋ป๊ฒ ์ฃผ์์ ๋ฌ๋์?
xView ๋ฐ์ดํฐ ์ธํธ๋ ์๋๋ทฐ-3 ์์ฑ์์ 0.3m์ ์ง์ ์ํ ๊ฑฐ๋ฆฌ์์ ์์งํ ๊ณ ํด์๋ ์์ฑ ์ด๋ฏธ์ง๋ก ๊ตฌ์ฑ๋์ด ์์ต๋๋ค. ์ฝ 1,400kmยฒ์ ์ด๋ฏธ์ง์ 60๊ฐ ํด๋์ค์ ๊ฑธ์ณ 100๋ง ๊ฐ๊ฐ ๋๋ ๋ฌผ์ฒด๊ฐ ํฌํจ๋์ด ์์ต๋๋ค. ๋ฐ์ดํฐ ์ธํธ ๋ด์ ๊ฐ ๊ฐ์ฒด์๋ ๊ฒฝ๊ณ ์์๊ฐ ์ฃผ์์ผ๋ก ํ์๋์ด ์์ด ์ค๋ฒํค๋ ์ด๋ฏธ์ง์์ ๊ฐ์ฒด ๊ฐ์ง๋ฅผ ์ํ ๋ฅ๋ฌ๋ ๋ชจ๋ธ์ ํ๋ จํ๊ณ ํ๊ฐํ๋ ๋ฐ ์ด์์ ์ ๋๋ค. ์์ธํ ๊ฐ์๋ ์ฌ๊ธฐ์์ ๋ฐ์ดํฐ ์ธํธ ๊ตฌ์กฐ ์น์ ์ ์ฐธ์กฐํ์ธ์.
์ฐ๊ตฌ์์ xView ๋ฐ์ดํฐ ์งํฉ์ ์ธ์ฉํ๋ ค๋ฉด ์ด๋ป๊ฒ ํด์ผ ํ๋์?
์ฐ๊ตฌ์ xView ๋ฐ์ดํฐ์ธํธ๋ฅผ ํ์ฉํ๋ ๊ฒฝ์ฐ ๋ค์ ๋ ผ๋ฌธ์ ์ธ์ฉํด ์ฃผ์ธ์:
@misc{lam2018xview,
title={xView: Objects in Context in Overhead Imagery},
author={Darius Lam and Richard Kuzma and Kevin McGee and Samuel Dooley and Michael Laielli and Matthew Klaric and Yaroslav Bulatov and Brendan McCord},
year={2018},
eprint={1802.07856},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
xView ๋ฐ์ดํฐ ์ธํธ์ ๋ํ ์์ธํ ๋ด์ฉ์ xView ๋ฐ์ดํฐ ์ธํธ ๊ณต์ ์น์ฌ์ดํธ๋ฅผ ์ฐธ์กฐํ์ธ์.