์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ

๋‹ค์Œ์— ๋Œ€ํ•œ ํฌ๊ด„์ ์ธ ์ž์Šต์„œ Ultralytics YOLO

Welcome to the Ultralytics' YOLO ๐Ÿš€ Guides! Our comprehensive tutorials cover various aspects of the YOLO object detection model, ranging from training and prediction to deployment. Built on PyTorch, YOLO stands out for its exceptional speed and accuracy in real-time object detection tasks.

Whether you're a beginner or an expert in deep learning, our tutorials offer valuable insights into the implementation and optimization of YOLO for your computer vision projects. Let's dive in!



Watch: Ultralytics YOLO11 Guides Overview

๊ฐ€์ด๋“œ

๋‹ค์Œ์€ Ultralytics YOLO ์˜ ๋‹ค์–‘ํ•œ ์ธก๋ฉด์„ ์ตํžˆ๋Š” ๋ฐ ๋„์›€์ด ๋˜๋Š” ์‹ฌ์ธต ๊ฐ€์ด๋“œ ๋ชจ์Œ์ž…๋‹ˆ๋‹ค.

  • YOLO ์ผ๋ฐ˜์ ์ธ ๋ฌธ์ œ โญ ๊ถŒ์žฅ ์‚ฌํ•ญ: Ultralytics YOLO ๋ชจ๋ธ๋กœ ์ž‘์—…ํ•  ๋•Œ ๊ฐ€์žฅ ์ž์ฃผ ๋ฐœ์ƒํ•˜๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•œ ์‹ค์šฉ์ ์ธ ์†”๋ฃจ์…˜ ๋ฐ ๋ฌธ์ œ ํ•ด๊ฒฐ ํŒ์ž…๋‹ˆ๋‹ค.
  • YOLO Performance Metrics โญ ESSENTIAL: Understand the key metrics like mAP, IoU, and F1 score used to evaluate the performance of your YOLO models. Includes practical examples and tips on how to improve detection accuracy and speed.
  • Model Deployment Options: Overview of YOLO model deployment formats like ONNX, OpenVINO, and TensorRT, with pros and cons for each to inform your deployment strategy.
  • K-Fold ๊ต์ฐจ ๊ฒ€์ฆ ๐Ÿš€ ์‹ ๊ทœ: K-Fold ๊ต์ฐจ ๊ฒ€์ฆ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ ์ผ๋ฐ˜ํ™”๋ฅผ ๊ฐœ์„ ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ณด์„ธ์š”.
  • ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹ ๐Ÿš€ ์‹ ๊ทœ: ํŠœ๋„ˆ ํด๋ž˜์Šค์™€ ์œ ์ „์  ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๋ฏธ์„ธ ์กฐ์ •ํ•˜์—ฌ YOLO ๋ชจ๋ธ์„ ์ตœ์ ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ณด์„ธ์š”.
  • SAHI Tiled Inference ๐Ÿš€ NEW: Comprehensive guide on leveraging SAHI's sliced inference capabilities with YOLO11 for object detection in high-resolution images.
  • AzureML Quickstart ๐Ÿš€ NEW: Get up and running with Ultralytics YOLO models on Microsoft's Azure Machine Learning platform. Learn how to train, deploy, and scale your object detection projects in the cloud.
  • Conda ๋น ๋ฅธ ์‹œ์ž‘ ๐Ÿš€ ์‹ ๊ทœ: Ultralytics ์— ๋Œ€ํ•œ Conda ํ™˜๊ฒฝ ์„ค์ •์— ๋Œ€ํ•œ ๋‹จ๊ณ„๋ณ„ ๊ฐ€์ด๋“œ์ž…๋‹ˆ๋‹ค. Ultralytics ํŒจํ‚ค์ง€๋ฅผ ํšจ์œจ์ ์œผ๋กœ ์„ค์น˜ํ•˜๊ณ  ์‚ฌ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ณด์„ธ์š”.
  • Docker๋น ๋ฅธ ์‹œ์ž‘ ๐Ÿš€ ์‹ ๊ทœ: Docker๋กœ Ultralytics YOLO ๋ชจ๋ธ์„ ์„ค์ •ํ•˜๊ณ  ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์ „์ฒด ๊ฐ€์ด๋“œ์ž…๋‹ˆ๋‹ค. ์ผ๊ด€๋œ ๊ฐœ๋ฐœ ๋ฐ ๋ฐฐํฌ๋ฅผ ์œ„ํ•ด Docker๋ฅผ ์„ค์น˜ํ•˜๊ณ , GPU ์ง€์›์„ ๊ด€๋ฆฌํ•˜๊ณ , ๊ฒฉ๋ฆฌ๋œ ์ปจํ…Œ์ด๋„ˆ์—์„œ YOLO ๋ชจ๋ธ์„ ์‹คํ–‰ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ณด์„ธ์š”.
  • ๋ผ์ฆˆ๋ฒ ๋ฆฌ ํŒŒ์ด ๐Ÿš€ ์‹ ๊ทœ: ์ตœ์‹  ๋ผ์ฆˆ๋ฒ ๋ฆฌ ํŒŒ์ด ํ•˜๋“œ์›จ์–ด์—์„œ YOLO ๋ชจ๋ธ์„ ์‹คํ–‰ํ•˜๋Š” ๋น ๋ฅธ ์‹œ์ž‘ ํŠœํ† ๋ฆฌ์–ผ.
  • NVIDIA Jetson ๐Ÿš€ ์‹ ๊ทœ: NVIDIA Jetson ์žฅ์น˜์— YOLO ๋ชจ๋ธ์„ ๋ฐฐํฌํ•˜๊ธฐ ์œ„ํ•œ ๋น ๋ฅธ ์‹œ์ž‘ ๊ฐ€์ด๋“œ.
  • NVIDIA Jetson์˜ DeepStream ๐Ÿš€ ์‹ ๊ทœ: DeepStream ๋ฐ TensorRT ์„ ์‚ฌ์šฉํ•˜์—ฌ NVIDIA Jetson ์žฅ์น˜์— YOLO ๋ชจ๋ธ์„ ๋ฐฐํฌํ•˜๊ธฐ ์œ„ํ•œ ๋น ๋ฅธ ์‹œ์ž‘ ๊ฐ€์ด๋“œ.
  • Triton Inference Server Integration ๐Ÿš€ NEW: Dive into the integration of Ultralytics YOLO11 with NVIDIA's Triton Inference Server for scalable and efficient deep learning inference deployments.
  • YOLO ์Šค๋ ˆ๋“œ ์•ˆ์ „ ์ถ”๋ก  ๐Ÿš€ ์‹ ๊ทœ: YOLO ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ์Šค๋ ˆ๋“œ ์•ˆ์ „ ๋ฐฉ์‹์œผ๋กœ ์ถ”๋ก ์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ€์ด๋“œ๋ผ์ธ์ž…๋‹ˆ๋‹ค. ๊ฒฝ์Ÿ ์กฐ๊ฑด์„ ๋ฐฉ์ง€ํ•˜๊ณ  ์ผ๊ด€๋œ ์˜ˆ์ธก์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•œ ์Šค๋ ˆ๋“œ ์•ˆ์ „์˜ ์ค‘์š”์„ฑ๊ณผ ๋ชจ๋ฒ” ์‚ฌ๋ก€์— ๋Œ€ํ•ด ์•Œ์•„๋ณด์„ธ์š”.
  • ์„ธ๋ถ„ํ™” ๊ฐœ์ฒด ๋ถ„๋ฆฌํ•˜๊ธฐ ๐Ÿš€ ์‹ ๊ทœ: Ultralytics ์„ธ๋ถ„ํ™”๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ด๋ฏธ์ง€์—์„œ ๊ฐœ์ฒด๋ฅผ ์ถ”์ถœํ•˜๊ฑฐ๋‚˜ ๋ถ„๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ๋‹จ๊ณ„๋ณ„ ๋ ˆ์‹œํ”ผ์™€ ์„ค๋ช…์ด ์ถ”๊ฐ€๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
  • ๋ผ์ฆˆ๋ฒ ๋ฆฌ ํŒŒ์ด์˜ Edge TPU : Google Edge TPU ๋Š” ๋ผ์ฆˆ๋ฒ ๋ฆฌ ํŒŒ์ด์—์„œ YOLO ์ถ”๋ก ์„ ๊ฐ€์†ํ™”ํ•ฉ๋‹ˆ๋‹ค.
  • ํ„ฐ๋ฏธ๋„์—์„œ ์ถ”๋ก  ์ด๋ฏธ์ง€ ๋ณด๊ธฐ: ์›๊ฒฉ ํ„ฐ๋„ ๋˜๋Š” SSH ์„ธ์…˜์„ ์‚ฌ์šฉํ•  ๋•Œ VSCode์˜ ํ†ตํ•ฉ ํ„ฐ๋ฏธ๋„์„ ์‚ฌ์šฉํ•˜์—ฌ ์ถ”๋ก  ๊ฒฐ๊ณผ๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
  • OpenVINO ์ง€์—ฐ ์‹œ๊ฐ„ ๋Œ€ ์ฒ˜๋ฆฌ๋Ÿ‰ ๋ชจ๋“œ - ์ตœ๊ณ ์˜ YOLO ์ถ”๋ก  ์„ฑ๋Šฅ์„ ์œ„ํ•œ ์ง€์—ฐ ์‹œ๊ฐ„ ๋ฐ ์ฒ˜๋ฆฌ๋Ÿ‰ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์— ๋Œ€ํ•ด ์•Œ์•„๋ณด์„ธ์š”.
  • ์ปดํ“จํ„ฐ ๋น„์ „ ํ”„๋กœ์ ํŠธ์˜ ๋‹จ๊ณ„ ๐Ÿš€ ์‹ ๊ทœ: ๋ชฉํ‘œ ์ •์˜, ๋ชจ๋ธ ์„ ํƒ, ๋ฐ์ดํ„ฐ ์ค€๋น„, ๊ฒฐ๊ณผ ํ‰๊ฐ€ ๋“ฑ ์ปดํ“จํ„ฐ ๋น„์ „ ํ”„๋กœ์ ํŠธ์™€ ๊ด€๋ จ๋œ ์ฃผ์š” ๋‹จ๊ณ„์— ๋Œ€ํ•ด ์•Œ์•„๋ณด์„ธ์š”.
  • ์ปดํ“จํ„ฐ ๋น„์ „ ํ”„๋กœ์ ํŠธ์˜ ๋ชฉํ‘œ ์ •์˜ํ•˜๊ธฐ ๐Ÿš€ ์‹ ๊ทœ: ์ปดํ“จํ„ฐ ๋น„์ „ ํ”„๋กœ์ ํŠธ์˜ ๋ช…ํ™•ํ•˜๊ณ  ์ธก์ • ๊ฐ€๋Šฅํ•œ ๋ชฉํ‘œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ •์˜ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์‚ดํŽด๋ณด์„ธ์š”. ์ž˜ ์ •์˜๋œ ๋ฌธ์ œ ์ง„์ˆ ์˜ ์ค‘์š”์„ฑ๊ณผ ์ด๋ฅผ ํ†ตํ•ด ํ”„๋กœ์ ํŠธ์˜ ๋กœ๋“œ๋งต์„ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ณด์„ธ์š”.
  • ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ์ฃผ์„ ๐Ÿš€ ์‹ ๊ทœ: ์ปดํ“จํ„ฐ ๋น„์ „ ๋ชจ๋ธ์„ ์œ„ํ•œ ๊ณ ํ’ˆ์งˆ ์ž…๋ ฅ์„ ์ƒ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ์ฃผ์„ ๋‹ฌ๊ธฐ ๋„๊ตฌ, ๊ธฐ๋ฒ•, ๋ชจ๋ฒ” ์‚ฌ๋ก€๋ฅผ ์‚ดํŽด๋ณด์„ธ์š”.
  • Preprocessing Annotated Data ๐Ÿš€ NEW: Learn about preprocessing and augmenting image data in computer vision projects using YOLO11, including normalization, dataset augmentation, splitting, and exploratory data analysis (EDA).
  • Tips for Model Training ๐Ÿš€ NEW: Explore tips on optimizing batch sizes, using mixed precision, applying pre-trained weights, and more to make training your computer vision model a breeze.
  • ๋ชจ๋ธ ํ‰๊ฐ€ ๋ฐ ๋ฏธ์„ธ ์กฐ์ •์— ๋Œ€ํ•œ ์ธ์‚ฌ์ดํŠธ ๐Ÿš€ ์‹ ๊ทœ: ์ปดํ“จํ„ฐ ๋น„์ „ ๋ชจ๋ธ์„ ํ‰๊ฐ€ํ•˜๊ณ  ๋ฏธ์„ธ ์กฐ์ •ํ•˜๋Š” ์ „๋žต๊ณผ ๋ชจ๋ฒ” ์‚ฌ๋ก€์— ๋Œ€ํ•œ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์–ป์œผ์„ธ์š”. ์ตœ์ ์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด ๋ชจ๋ธ์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ˜๋ณต์ ์ธ ํ”„๋กœ์„ธ์Šค์— ๋Œ€ํ•ด ์•Œ์•„๋ณด์„ธ์š”.
  • ๋ชจ๋ธ ํ…Œ์ŠคํŠธ ๊ฐ€์ด๋“œ ๐Ÿš€ ์‹ ๊ทœ: ์‹ค์ œ ํ™˜๊ฒฝ์—์„œ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ชจ๋ธ์„ ํ…Œ์ŠคํŠธํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ์ฒ ์ €ํ•œ ๊ฐ€์ด๋“œ์ž…๋‹ˆ๋‹ค. ํ”„๋กœ์ ํŠธ ๋ชฉํ‘œ์— ๋”ฐ๋ผ ์ •ํ™•์„ฑ, ์‹ ๋ขฐ์„ฑ, ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ณด์„ธ์š”.
  • ๋ชจ๋ธ ๋ฐฐํฌ ๋ชจ๋ฒ” ์‚ฌ๋ก€ ๐Ÿš€ ์‹ ๊ทœ: ์ตœ์ ํ™”, ๋ฌธ์ œ ํ•ด๊ฒฐ ๋ฐ ๋ณด์•ˆ์— ์ค‘์ ์„ ๋‘๊ณ  ์ปดํ“จํ„ฐ ๋น„์ „ ํ”„๋กœ์ ํŠธ์—์„œ ๋ชจ๋ธ์„ ํšจ์œจ์ ์œผ๋กœ ๋ฐฐํฌํ•˜๊ธฐ ์œ„ํ•œ ํŒ๊ณผ ๋ชจ๋ฒ” ์‚ฌ๋ก€๋ฅผ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค.
  • ์ปดํ“จํ„ฐ ๋น„์ „ ๋ชจ๋ธ ์œ ์ง€ ๊ด€๋ฆฌ ํ•˜๊ธฐ ๐Ÿš€ ์‹ ๊ทœ: ์ปดํ“จํ„ฐ ๋น„์ „ ๋ชจ๋ธ์„ ๋ชจ๋‹ˆํ„ฐ๋ง, ์œ ์ง€ ๊ด€๋ฆฌ ๋ฐ ๋ฌธ์„œํ™”ํ•˜์—ฌ ์ •ํ™•์„ฑ์„ ๋ณด์žฅํ•˜๊ณ  ์ด์ƒ ์ง•ํ›„๋ฅผ ๋ฐœ๊ฒฌํ•˜๋ฉฐ ๋ฐ์ดํ„ฐ ๋“œ๋ฆฌํ”„ํŠธ๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ์ฃผ์š” ๊ด€ํ–‰์„ ์ดํ•ดํ•ฉ๋‹ˆ๋‹ค.
  • ROS ๋น ๋ฅธ ์‹œ์ž‘ ๐Ÿš€ ์‹ ๊ทœ: ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ๋ฐ ์‹ฌ๋„ ์ด๋ฏธ์ง€๋ฅผ ํฌํ•จํ•œ ๋กœ๋ด‡ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ์‹ค์‹œ๊ฐ„ ๋ฌผ์ฒด ๊ฐ์ง€๋ฅผ ์œ„ํ•ด YOLO ์„ ๋กœ๋ด‡ ์šด์˜ ์ฒด์ œ(ROS)์™€ ํ†ตํ•ฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ณด์„ธ์š”.

๊ฐ€์ด๋“œ์— ๊ธฐ์—ฌํ•˜๊ธฐ

์ปค๋ฎค๋‹ˆํ‹ฐ์˜ ๊ธฐ์—ฌ๋ฅผ ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค! ์•„์ง ๊ฐ€์ด๋“œ์—์„œ ๋‹ค๋ฃจ์ง€ ์•Š์€ Ultralytics YOLO ์˜ ํŠน์ • ์ธก๋ฉด์„ ๋งˆ์Šคํ„ฐํ–ˆ๋‹ค๋ฉด ์—ฌ๋Ÿฌ๋ถ„์˜ ์ „๋ฌธ ์ง€์‹์„ ๊ณต์œ ํ•ด ์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค. ๊ฐ€์ด๋“œ๋ฅผ ์ž‘์„ฑํ•˜๋Š” ๊ฒƒ์€ ์ปค๋ฎค๋‹ˆํ‹ฐ์— ๋ณด๋‹ตํ•˜๊ณ  ๋”์šฑ ํฌ๊ด„์ ์ด๊ณ  ์‚ฌ์šฉ์ž ์นœํ™”์ ์ธ ๋ฌธ์„œ๋ฅผ ๋งŒ๋“œ๋Š” ๋ฐ ๋„์›€์ด ๋˜๋Š” ์ข‹์€ ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค.

์‹œ์ž‘ํ•˜๋ ค๋ฉด ํ’€ ๋ฆฌํ€˜์ŠคํŠธ(PR)๋ฅผ ์—ฌ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ๊ฐ€์ด๋“œ๋ผ์ธ์ด ๋‹ด๊ธด ๊ธฐ์—ฌ ๊ฐ€์ด๋“œ๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”(๐Ÿ› ๏ธ). ์—ฌ๋Ÿฌ๋ถ„์˜ ๊ธฐ์—ฌ๋ฅผ ๊ธฐ๋‹ค๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค!

Ultralytics YOLO ์ƒํƒœ๊ณ„๋ฅผ ๋”์šฑ ๊ฒฌ๊ณ ํ•˜๊ณ  ๋‹ค์–‘ํ•˜๊ฒŒ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด ํ•จ๊ป˜ ๋…ธ๋ ฅํ•ฉ์‹œ๋‹ค ๐Ÿ™!

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ

Ultralytics YOLO ์„ ์‚ฌ์šฉํ•˜์—ฌ ์‚ฌ์šฉ์ž ์ง€์ • ๊ฐ์ฒด ๊ฐ์ง€ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•˜๋‚˜์š”?

Ultralytics YOLO ์„ ์‚ฌ์šฉํ•˜์—ฌ ์‚ฌ์šฉ์ž ์ง€์ • ๊ฐ์ฒด ๊ฐ์ง€ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๊ฐ„๋‹จํ•ฉ๋‹ˆ๋‹ค. ๋จผ์ € ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์˜ฌ๋ฐ”๋ฅธ ํ˜•์‹์œผ๋กœ ์ค€๋น„ํ•˜๊ณ  Ultralytics ํŒจํ‚ค์ง€๋ฅผ ์„ค์น˜ํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์Œ ์ฝ”๋“œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํ›ˆ๋ จ์„ ์‹œ์ž‘ํ•ฉ๋‹ˆ๋‹ค:

์˜ˆ

from ultralytics import YOLO

model = YOLO("yolo11n.pt")  # Load a pre-trained YOLO model
model.train(data="path/to/dataset.yaml", epochs=50)  # Train on custom dataset
yolo task=detect mode=train model=yolo11n.pt data=path/to/dataset.yaml epochs=50

์ž์„ธํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ ์„œ์‹ ๋ฐ ์ถ”๊ฐ€ ์˜ต์…˜์€ ๋ชจ๋ธ ํ•™์Šต์„ ์œ„ํ•œ ํŒ ๊ฐ€์ด๋“œ๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

YOLO ๋ชจ๋ธ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์–ด๋–ค ์„ฑ๋Šฅ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋‚˜์š”?

Evaluating your YOLO model performance is crucial to understanding its efficacy. Key metrics include Mean Average Precision (mAP), Intersection over Union (IoU), and F1 score. These metrics help assess the accuracy and precision of object detection tasks. You can learn more about these metrics and how to improve your model in our YOLO Performance Metrics guide.

์ปดํ“จํ„ฐ ๋น„์ „ ํ”„๋กœ์ ํŠธ์— Ultralytics HUB๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋Š” ์ด์œ ๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”?

Ultralytics HUB๋Š” ์ฝ”๋“œ๊ฐ€ ํ•„์š” ์—†๋Š” ํ”Œ๋žซํผ์œผ๋กœ YOLO ๋ชจ๋ธ์˜ ๊ด€๋ฆฌ, ๊ต์œก ๋ฐ ๋ฐฐํฌ๋ฅผ ๊ฐ„์†Œํ™”ํ•ฉ๋‹ˆ๋‹ค. ์›ํ™œํ•œ ํ†ตํ•ฉ, ์‹ค์‹œ๊ฐ„ ์ถ”์  ๋ฐ ํด๋ผ์šฐ๋“œ ๊ต์œก์„ ์ง€์›ํ•˜๋ฏ€๋กœ ์ดˆ๋ณด์ž์™€ ์ „๋ฌธ๊ฐ€ ๋ชจ๋‘์—๊ฒŒ ์ด์ƒ์ ์ž…๋‹ˆ๋‹ค. Ultralytics HUB ๋น ๋ฅธ ์‹œ์ž‘ ๊ฐ€์ด๋“œ์—์„œ ๊ธฐ๋Šฅ์— ๋Œ€ํ•ด ์ž์„ธํžˆ ์•Œ์•„๋ณด๊ณ  ์›Œํฌํ”Œ๋กœ๋ฅผ ๊ฐ„์†Œํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์•Œ์•„๋ณด์„ธ์š”.

YOLO ๋ชจ๋ธ ๊ต์œก ์ค‘์— ์ง๋ฉดํ•˜๋Š” ์ผ๋ฐ˜์ ์ธ ๋ฌธ์ œ๋Š” ๋ฌด์—‡์ด๋ฉฐ ์–ด๋–ป๊ฒŒ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‚˜์š”?

Common issues during YOLO model training include data formatting errors, model architecture mismatches, and insufficient training data. To address these, ensure your dataset is correctly formatted, check for compatible model versions, and augment your training data. For a comprehensive list of solutions, refer to our YOLO Common Issues guide.

์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์—์„œ ์‹ค์‹œ๊ฐ„ ๊ฐ์ฒด ๊ฐ์ง€๋ฅผ ์œ„ํ•ด YOLO ๋ชจ๋ธ์„ ๋ฐฐํฌํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•˜๋‚˜์š”?

NVIDIA Jetson ๋ฐ Raspberry Pi์™€ ๊ฐ™์€ ์—ฃ์ง€ ์žฅ์น˜์— YOLO ๋ชจ๋ธ์„ ๋ฐฐํฌํ•˜๋ ค๋ฉด ํ•ด๋‹น ๋ชจ๋ธ์„ TensorRT ๋˜๋Š” TFLite์™€ ๊ฐ™์€ ํ˜ธํ™˜ ๊ฐ€๋Šฅํ•œ ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์—ฃ์ง€ ํ•˜๋“œ์›จ์–ด์—์„œ ์‹ค์‹œ๊ฐ„ ๊ฐ์ฒด ๊ฐ์ง€๋ฅผ ์‹œ์ž‘ํ•˜๋ ค๋ฉด NVIDIA Jetson ๋ฐ Raspberry Pi ๋ฐฐํฌ์— ๋Œ€ํ•œ ๋‹จ๊ณ„๋ณ„ ๊ฐ€์ด๋“œ๋ฅผ ๋”ฐ๋ฅด์„ธ์š”. ์ด ๊ฐ€์ด๋“œ๋Š” ์„ค์น˜, ๊ตฌ์„ฑ ๋ฐ ์„ฑ๋Šฅ ์ตœ์ ํ™”๋ฅผ ์•ˆ๋‚ดํ•ฉ๋‹ˆ๋‹ค.


๐Ÿ“… Created 11 months ago โœ๏ธ Updated 6 days ago

๋Œ“๊ธ€