YOLO11 ๐ on AzureML
Azure๋ ๋ฌด์์ธ๊ฐ์?
Azure is Microsoft's cloud computing platform, designed to help organizations move their workloads to the cloud from on-premises data centers. With the full spectrum of cloud services including those for computing, databases, analytics, machine learning, and networking, users can pick and choose from these services to develop and scale new applications, or run existing applications, in the public cloud.
AzureML(Azure ๋จธ์ ๋ฌ๋)์ด๋?
์ผ๋ฐ์ ์ผ๋ก AzureML์ด๋ผ๊ณ ํ๋ Azure ๊ธฐ๊ณ ํ์ต์ ๋ฐ์ดํฐ ๊ณผํ์์ ๊ฐ๋ฐ์๊ฐ ์์ธก ๋ถ์์ ์ ํ๋ฆฌ์ผ์ด์ ์ ํจ์จ์ ์ผ๋ก ํฌํจํ ์ ์๋๋ก ์ง์ํ๋ ์์ ๊ด๋ฆฌํ ํด๋ผ์ฐ๋ ์๋น์ค๋ก, ์กฐ์ง์ด ๋๊ท๋ชจ ๋ฐ์ดํฐ ์งํฉ์ ์ฌ์ฉํ๊ณ ํด๋ผ์ฐ๋์ ๋ชจ๋ ์ด์ ์ ๊ธฐ๊ณ ํ์ต์ ์ ์ฉํ ์ ์๋๋ก ์ง์ํฉ๋๋ค. AzureML์ ๋จธ์ ๋ฌ๋์ ๋ํ ์ ๊ทผ์ฑ, ์ฌ์ฉ ํธ์์ฑ, ํ์ฅ์ฑ์ ๋ชฉํ๋ก ํ๋ ๋ค์ํ ์๋น์ค์ ๊ธฐ๋ฅ์ ์ ๊ณตํฉ๋๋ค. ๊ฐ๋ฐ์๊ฐ ๋จธ์ ๋ฌ๋ ๋ชจ๋ธ์ ์ต๋ํ ํ์ฉํ ์ ์๋๋ก ์๋ํ๋ ๋จธ์ ๋ฌ๋, ๋๋๊ทธ ์ค ๋๋กญ ๋ชจ๋ธ ํ์ต๊ณผ ๊ฐ์ ๊ธฐ๋ฅ๋ฟ๋ง ์๋๋ผ ๊ฐ๋ ฅํ Python SDK๋ฅผ ์ ๊ณตํฉ๋๋ค.
AzureML์ YOLO ์ฌ์ฉ์์๊ฒ ์ด๋ค ์ด์ ์ด ์๋์?
YOLO (You Only Look Once) ์ฌ์ฉ์๋ฅผ ์ํด AzureML์ ๋จธ์ ๋ฌ๋ ๋ชจ๋ธ์ ํ์ตํ๊ณ ๋ฐฐํฌํ ์ ์๋ ๊ฐ๋ ฅํ๊ณ ํ์ฅ ๊ฐ๋ฅํ๋ฉฐ ํจ์จ์ ์ธ ํ๋ซํผ์ ์ ๊ณตํฉ๋๋ค. ๋น ๋ฅธ ํ๋กํ ํ์ ์ ์คํํ๊ฑฐ๋ ๋ ๊ด๋ฒ์ํ ๋ฐ์ดํฐ๋ฅผ ์ฒ๋ฆฌํ๊ธฐ ์ํด ํ์ฅํ๋ ค๋ ๊ฒฝ์ฐ, AzureML์ ์ ์ฐํ๊ณ ์ฌ์ฉ์ ์นํ์ ์ธ ํ๊ฒฝ์ ์ฌ์ฉ์์ ํ์์ ๋ง๋ ๋ค์ํ ๋๊ตฌ์ ์๋น์ค๋ฅผ ์ ๊ณตํฉ๋๋ค. AzureML์ ํ์ฉํ์ฌ ๋ค์์ ์ํํ ์ ์์ต๋๋ค:
- ๊ต์ก์ ์ํ ๋๊ท๋ชจ ๋ฐ์ดํฐ ์ธํธ์ ์ปดํจํ ๋ฆฌ์์ค๋ฅผ ์ฝ๊ฒ ๊ด๋ฆฌํ ์ ์์ต๋๋ค.
- ๋ฐ์ดํฐ ์ ์ฒ๋ฆฌ, ๊ธฐ๋ฅ ์ ํ, ๋ชจ๋ธ ํ์ต์ ์ํ ๊ธฐ๋ณธ ์ ๊ณต ๋๊ตฌ๋ฅผ ํ์ฉํ์ธ์.
- ๋ชจ๋ธ ๋ฐ ๋ฐ์ดํฐ์ ๋ชจ๋ํฐ๋ง, ๊ฐ์ฌ, ๋ฒ์ ๊ด๋ฆฌ๋ฅผ ํฌํจํ๋ ์ด์ ๊ตญํ๋์ง ์๋ MLOps(๋จธ์ ๋ฌ๋ ์ด์) ๊ธฐ๋ฅ์ผ๋ก ๋์ฑ ํจ์จ์ ์ผ๋ก ํ์ ํ์ธ์.
In the subsequent sections, you will find a quickstart guide detailing how to run YOLO11 object detection models using AzureML, either from a compute terminal or a notebook.
์ ์ ์กฐ๊ฑด
์์ํ๊ธฐ ์ ์ AzureML ์์ ์์ญ์ ์ก์ธ์คํ ์ ์๋์ง ํ์ธํ์ธ์. ์๋ ๊ฒฝ์ฐ Azure์ ๊ณต์ ์ค๋ช ์์ ๋ฐ๋ผ ์ AzureML ์์ ์์ญ์ ๋ง๋ค ์ ์์ต๋๋ค. ์ด ์์ ์์ญ์ ๋ชจ๋ AzureML ๋ฆฌ์์ค๋ฅผ ๊ด๋ฆฌํ๋ ์ค์ ์ง์ค์ ๊ณต๊ฐ์ ์ญํ ์ ํฉ๋๋ค.
์ปดํจํ ์ธ์คํด์ค ๋ง๋ค๊ธฐ
AzureML ์์ ์์ญ์์ ์ปดํจํ > ์ธ์คํด์ค ์ปดํจํ > ์๋ก ๋ง๋ค๊ธฐ๋ฅผ ์ ํํ๊ณ ํ์ํ ๋ฆฌ์์ค๊ฐ ์๋ ์ธ์คํด์ค๋ฅผ ์ ํํฉ๋๋ค.
ํฐ๋ฏธ๋์์ ๋น ๋ฅธ ์์
์ปดํจํ ์ ์์ํ๊ณ ํฐ๋ฏธ๋์ ์ฝ๋๋ค:
๊ฐ์ ํ๊ฒฝ ๋ง๋ค๊ธฐ
์ฝ๋ค ๊ฐ์ ํ๊ฒฝ์ ์์ฑํ๊ณ ๊ทธ ์์ pip๋ฅผ ์ค์นํฉ๋๋ค:
ํ์ํ ์ข ์์ฑ์ ์ค์นํฉ๋๋ค:
Perform YOLO11 tasks
์์ธก:
Train a detection model for 10 epochs with an initial learning_rate of 0.01:
์์ธํ ์ฌ์ฉ ๋ฐฉ๋ฒ์ Ultralytics CLI ์์ ํ์ธํ ์ ์์ต๋๋ค.
๋ ธํธ๋ถ์์ ๋น ๋ฅธ ์์
์ IPython ์ปค๋ ์์ฑ
์ปดํจํ ํฐ๋ฏธ๋์ ์ฝ๋๋ค.
์ปดํจํ ํฐ๋ฏธ๋์์ ๋ ธํธ๋ถ์์ ์ข ์์ฑ์ ๊ด๋ฆฌํ๊ธฐ ์ํด ์ฌ์ฉํ ์ ์์ดํผ์ปค๋์ ๋ง๋ค์ด์ผ ํฉ๋๋ค:
conda create --name yolo11env -y
conda activate yolo11env
conda install pip -y
conda install ipykernel -y
python -m ipykernel install --user --name yolo11env --display-name "yolo11env"
ํฐ๋ฏธ๋์ ๋ซ๊ณ ์ ๋ ธํธ๋ถ์ ๋ง๋ญ๋๋ค. ๋ ธํธ๋ถ์์ ์ ์ปค๋์ ์ ํํ ์ ์์ต๋๋ค.
๊ทธ๋ฐ ๋ค์ ๋ ธํธ๋ถ ์ ์ ์ด๊ณ ํ์ํ ์ข ์์ฑ์ ์ค์นํ ์ ์์ต๋๋ค:
%%bash
source activate yolo11env
cd ultralytics
pip install -r requirements.txt
pip install ultralytics
pip install onnx>=1.12.0
์ฃผ์ํ ์ ์ source activate yolo11env
๋ฅผ ๋ชจ๋ %%bash ์
์ ์ ์ฉํ์ฌ %%bash ์
์ด ์ํ๋ ํ๊ฒฝ์ ์ฌ์ฉํ๋๋ก ํฉ๋๋ค.
๋ฅผ ์ฌ์ฉํ์ฌ ๋ช ๊ฐ์ง ์์ธก์ ์คํํฉ๋๋ค. Ultralytics CLI:
%%bash
source activate yolo11env
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
๋๋ Ultralytics Python ์ธํฐํ์ด์ค๋ฅผ ์ฌ์ฉํ์ฌ ๋ชจ๋ธ์ ํ๋ จํ ์ ์์ต๋๋ค:
from ultralytics import YOLO
# Load a model
model = YOLO("yolo11n.pt") # load an official YOLO11n model
# Use the model
model.train(data="coco8.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
path = model.export(format="onnx") # export the model to ONNX format
You can use either the Ultralytics CLI or Python interface for running YOLO11 tasks, as described in the terminal section above.
By following these steps, you should be able to get YOLO11 running quickly on AzureML for quick trials. For more advanced uses, you may refer to the full AzureML documentation linked at the beginning of this guide.
AzureML๋ก ์์ธํ ์์๋ณด๊ธฐ
This guide serves as an introduction to get you up and running with YOLO11 on AzureML. However, it only scratches the surface of what AzureML can offer. To delve deeper and unlock the full potential of AzureML for your machine learning projects, consider exploring the following resources:
- ๋ฐ์ดํฐ ์์ฐ ๋ง๋ค๊ธฐ: AzureML ํ๊ฒฝ ๋ด์์ ๋ฐ์ดํฐ ์์ฐ์ ํจ๊ณผ์ ์ผ๋ก ์ค์ ํ๊ณ ๊ด๋ฆฌํ๋ ๋ฐฉ๋ฒ์ ์์๋ณด์ธ์.
- AzureML ์์ ์์ํ๊ธฐ: AzureML์์ ๋จธ์ ๋ฌ๋ ๊ต์ก ์์ ์ ์์ํ๋ ๋ฐฉ๋ฒ์ ๋ํ ํฌ๊ด์ ์ธ ์ดํด๋ฅผ ์ป์ผ์ธ์.
- ๋ชจ๋ธ ๋ฑ๋กํ๊ธฐ: ๋ฑ๋ก, ๋ฒ์ ๊ด๋ฆฌ ๋ฐ ๋ฐฐํฌ๋ฅผ ํฌํจํ ๋ชจ๋ธ ๊ด๋ฆฌ ๋ฐฉ๋ฒ์ ์์งํ์ธ์.
- Train YOLO11 with AzureML Python SDK: Explore a step-by-step guide on using the AzureML Python SDK to train your YOLO11 models.
- Train YOLO11 with AzureML CLI: Discover how to utilize the command-line interface for streamlined training and management of YOLO11 models on AzureML.
์์ฃผ ๋ฌป๋ ์ง๋ฌธ
How do I run YOLO11 on AzureML for model training?
Running YOLO11 on AzureML for model training involves several steps:
-
์ปดํจํ ์ธ์คํด์ค๋ฅผ ๋ง๋ญ๋๋ค: AzureML ์์ ์์ญ์์ ์ปดํจํ > ์ปดํจํ ์ธ์คํด์ค > ์๋ก ๋ง๋ค๊ธฐ๋ก ์ด๋ํ์ฌ ํ์ํ ์ธ์คํด์ค๋ฅผ ์ ํํฉ๋๋ค.
-
ํ๊ฒฝ ์ค์ : ์ปดํจํ ์ธ์คํด์ค๋ฅผ ์์ํ๊ณ ํฐ๋ฏธ๋์ ์ฐ ๋ค์ ์ฝ๋ค ํ๊ฒฝ์ ๋ง๋ญ๋๋ค:
-
Run YOLO11 Tasks: Use the Ultralytics CLI to train your model:
์์ธํ ๋ด์ฉ์ Ultralytics CLI ์์ ์ฌ์ฉ ์ง์นจ์ ์ฐธ์กฐํ์ธ์.
What are the benefits of using AzureML for YOLO11 training?
AzureML provides a robust and efficient ecosystem for training YOLO11 models:
- ํ์ฅ์ฑ: ๋ฐ์ดํฐ์ ๋ชจ๋ธ์ ๋ณต์ก์ฑ์ด ์ฆ๊ฐํจ์ ๋ฐ๋ผ ์ปดํจํ ๋ฆฌ์์ค๋ฅผ ์ฝ๊ฒ ํ์ฅํ ์ ์์ต๋๋ค.
- MLOps ํตํฉ: ๋ฒ์ ๊ด๋ฆฌ, ๋ชจ๋ํฐ๋ง ๋ฐ ๊ฐ์ฌ์ ๊ฐ์ ๊ธฐ๋ฅ์ ํ์ฉํ์ฌ ML ์ด์์ ๊ฐ์ํํ์ธ์.
- ํ์ : ํ ๋ด์์ ๋ฆฌ์์ค๋ฅผ ๊ณต์ ํ๊ณ ๊ด๋ฆฌํ์ฌ ํ์ ์ํฌํ๋ก์ฐ๋ฅผ ๊ฐ์ ํ์ธ์.
์ด๋ฌํ ์ฅ์ ๋๋ถ์ AzureML์ ๋น ๋ฅธ ํ๋กํ ํ์ ๋ถํฐ ๋๊ท๋ชจ ๋ฐฐํฌ์ ์ด๋ฅด๊ธฐ๊น์ง ๋ค์ํ ํ๋ก์ ํธ์ ์ด์์ ์ธ ํ๋ซํผ์ ๋๋ค. ๋ ๋ง์ ํ์ AzureML ์์ ์ ํ์ธํ์ธ์.
How do I troubleshoot common issues when running YOLO11 on AzureML?
Troubleshooting common issues with YOLO11 on AzureML can involve the following steps:
- ์ข
์์ฑ ๋ฌธ์ : ํ์ํ ํจํค์ง๊ฐ ๋ชจ๋ ์ค์น๋์ด ์๋์ง ํ์ธํฉ๋๋ค. ํ์ํ ํจํค์ง๊ฐ ์ค์น๋์ด ์๋์ง ํ์ธํฉ๋๋ค.
requirements.txt
ํ์ผ์์ ์ข ์์ฑ์ ํ์ธํฉ๋๋ค. - ํ๊ฒฝ ์ค์ : ๋ช ๋ น์ ์คํํ๊ธฐ ์ ์ ์ฝ๋ค ํ๊ฒฝ์ด ์ฌ๋ฐ๋ฅด๊ฒ ํ์ฑํ๋์๋์ง ํ์ธํฉ๋๋ค.
- ๋ฆฌ์์ค ํ ๋น: ์ปดํจํ ์ธ์คํด์ค์ ๊ต์ก ์ํฌ๋ก๋๋ฅผ ์ฒ๋ฆฌํ ์ ์๋ ์ถฉ๋ถํ ๋ฆฌ์์ค๊ฐ ์๋์ง ํ์ธํ์ธ์.
์ถ๊ฐ ์ง์นจ์ YOLO ์ผ๋ฐ ๋ฌธ์ ๋ฌธ์๋ฅผ ์ฐธ์กฐํ์ธ์.
AzureML์์ Ultralytics CLI ๋ฐ Python ์ธํฐํ์ด์ค๋ฅผ ๋ชจ๋ ์ฌ์ฉํ ์ ์๋์?
์, AzureML์ ์ฌ์ฉํ๋ฉด Ultralytics CLI ๋ฐ Python ์ธํฐํ์ด์ค๋ฅผ ๋ชจ๋ ์ํํ๊ฒ ์ฌ์ฉํ ์ ์์ต๋๋ค:
-
CLI: ๋น ๋ฅธ ์์ ๊ณผ ํฐ๋ฏธ๋์์ ์ง์ ํ์ค ์คํฌ๋ฆฝํธ๋ฅผ ์คํํ๋ ๋ฐ ์ด์์ ์ ๋๋ค.
-
Python ์ธํฐํ์ด์ค: ์ฌ์ฉ์ ์ง์ ์ฝ๋ฉ๊ณผ ๋ ธํธ๋ถ ๋ด ํตํฉ์ด ํ์ํ ๋ณต์กํ ์์ ์ ์ ์ฉํฉ๋๋ค.
๋ ์์ธํ ์ง์นจ์ ์ฌ๊ธฐ์ ์ฌ๊ธฐ ๋น ๋ฅธ ์์ ๊ฐ์ด๋๋ฅผ ์ฐธ์กฐํ์ธ์.
What is the advantage of using Ultralytics YOLO11 over other object detection models?
Ultralytics YOLO11 offers several unique advantages over competing object detection models:
- ์๋: Faster R-CNN ๋ฐ SSD์ ๊ฐ์ ๋ชจ๋ธ์ ๋นํด ์ถ๋ก ๋ฐ ํ์ต ์๊ฐ์ด ๋ ๋น ๋ฆ ๋๋ค.
- Accuracy: High accuracy in detection tasks with features like anchor-free design and enhanced augmentation strategies.
- ์ฌ์ฉ ํธ์์ฑ: ์ง๊ด์ ์ธ API์ CLI ๋ฅผ ํตํด ์ด๋ณด์๋ ์ ๋ฌธ๊ฐ ๋ชจ๋ ๋น ๋ฅด๊ฒ ์ค์ ํ ์ ์์ต๋๋ค.
To explore more about YOLO11's features, visit the Ultralytics YOLO page for detailed insights.