YOLOv5 AWS ๋ฅ ๋ฌ๋ ์ธ์คํด์ค์์ ๐: ์ ์ฒด ๊ฐ์ด๋
Setting up a high-performance deep learning environment can be daunting for newcomers, but fear not! ๐ ๏ธ With this guide, we'll walk you through the process of getting YOLOv5 up and running on an AWS Deep Learning instance. By leveraging the power of Amazon Web Services (AWS), even those new to machine learning can get started quickly and cost-effectively. The AWS platform's scalability is perfect for both experimentation and production deployment.
YOLOv5 ์ ๋ค๋ฅธ ๋น ๋ฅธ ์์ ์ต์ ์ ๋ค์๊ณผ ๊ฐ์ต๋๋ค. Colab ๋ ธํธ๋ถ , GCP ๋ฅ ๋ฌ๋ VM์ ๋์ปค ์ด๋ฏธ์ง์ ๋์ปค ํ๋ธ .
1๋จ๊ณ: AWS ์ฝ์ ๋ก๊ทธ์ธ
๋จผ์ ๊ณ์ ์ ์์ฑํ๊ฑฐ๋ https://aws.amazon.com/console/ ์์ AWS ์ฝ์์ ๋ก๊ทธ์ธํฉ๋๋ค. ๋ก๊ทธ์ธํ ํ ์ธ์คํด์ค๋ฅผ ๊ด๋ฆฌํ๊ณ ์ค์ ํ EC2 ์๋น์ค๋ฅผ ์ ํํฉ๋๋ค.
2๋จ๊ณ: ์ธ์คํด์ค ์์
EC2 ๋์๋ณด๋์์ ์ ๊ฐ์ ์๋ฒ๋ฅผ ์์ฑํ๋ ๊ด๋ฌธ์ธ ์ธ์คํด์ค ์์ ๋ฒํผ์ ์ฐพ์ ์ ์์ต๋๋ค.
์ฌ๋ฐ๋ฅธ ์๋ง์กด ๋จธ์ ์ด๋ฏธ์ง(AMI) ์ ํํ๊ธฐ
Here's where you choose the operating system and software stack for your instance. Type 'Deep Learning' into the search field and select the latest Ubuntu-based Deep Learning AMI, unless your needs dictate otherwise. Amazon's Deep Learning AMIs come pre-installed with popular frameworks and GPU drivers to streamline your setup process.
์ธ์คํด์ค ์ ํ ์ ํํ๊ธฐ
๋ฅ ๋ฌ๋ ์์ ์ ๊ฒฝ์ฐ ์ผ๋ฐ์ ์ผ๋ก ๋ชจ๋ธ ํ์ต ์๋๋ฅผ ํฌ๊ฒ ๋์ผ ์ ์๋ GPU ์ธ์คํด์ค ์ ํ์ ์ ํํ๋ ๊ฒ์ด ์ข์ต๋๋ค. ์ธ์คํด์ค ํฌ๊ธฐ๋ฅผ ๊ณ ๋ คํ ๋ ๋ชจ๋ธ์ ๋ฉ๋ชจ๋ฆฌ ์๊ตฌ ์ฌํญ์ด ์ธ์คํด์ค๊ฐ ์ ๊ณตํ ์ ์๋ ์ฉ๋์ ์ด๊ณผํด์๋ ์ ๋๋ค๋ ์ ์ ๊ธฐ์ตํ์ธ์.
์ฐธ๊ณ : ๋ชจ๋ธ์ ํฌ๊ธฐ๋ ์ธ์คํด์ค๋ฅผ ์ ํํ ๋ ๊ณ ๋ คํด์ผ ํ ์์์ ๋๋ค. ๋ชจ๋ธ์ด ์ธ์คํด์ค์ ์ฌ์ฉ ๊ฐ๋ฅํ RAM์ ์ด๊ณผํ๋ ๊ฒฝ์ฐ ์ ํ๋ฆฌ์ผ์ด์ ์ ์ถฉ๋ถํ ๋ฉ๋ชจ๋ฆฌ๊ฐ ์๋ ๋ค๋ฅธ ์ธ์คํด์ค ์ ํ์ ์ ํํ์ธ์.
์ฌ์ฉ ๊ฐ๋ฅํ GPU ์ธ์คํด์ค ์ ํ ๋ชฉ๋ก์ EC2 ์ธ์คํด์ค ์ ํ, ํนํ ๊ฐ์ํ๋ ์ปดํจํ ์์ ํ์ธํ์ธ์.
GPU ๋ชจ๋ํฐ๋ง ๋ฐ ์ต์ ํ์ ๋ํ ์์ธํ ๋ด์ฉ์ GPU ๋ชจ๋ํฐ๋ง ๋ฐ ์ต์ ํ๋ฅผ ์ฐธ์กฐํ์ธ์. ๊ฐ๊ฒฉ ์ฑ ์ ์ ๋ํด์๋ ์จ๋๋งจ๋ ๊ฐ๊ฒฉ ์ฑ ์ ๋ฐ ํ๋ฌผ ๊ฐ๊ฒฉ ์ฑ ์ ์ ์ฐธ์กฐํ์ธ์.
์ธ์คํด์ค ๊ตฌ์ฑ
Amazon EC2 ์คํ ์ธ์คํด์ค๋ ์ฌ์ฉํ์ง ์๋ ์ฉ๋์ ํ์ค ๋น์ฉ์ ์ผ๋ถ๋ก ์ ์ฐฐํ ์ ์์ผ๋ฏ๋ก ์ ํ๋ฆฌ์ผ์ด์ ์ ์คํํ ์ ์๋ ๋น์ฉ ํจ์จ์ ์ธ ๋ฐฉ๋ฒ์ ์ ๊ณตํฉ๋๋ค. ์คํ ์ธ์คํด์ค๊ฐ ๋ค์ด๋๋๋ผ๋ ๋ฐ์ดํฐ๊ฐ ์ ์ง๋๋ ์๊ตฌ์ ์ธ ํ๊ฒฝ์ ์ํ๋ค๋ฉด ์๊ตฌ ์์ฒญ์ ์ ํํ์ธ์.
์์ํ๊ธฐ ์ ์ 4~7๋จ๊ณ์์ ํ์์ ๋ฐ๋ผ ๋๋จธ์ง ์ธ์คํด์ค ์ค์ ๋ฐ ๋ณด์ ๊ตฌ์ฑ์ ์กฐ์ ํ๋ ๊ฒ์ ์์ง ๋ง์ธ์.
3๋จ๊ณ: ์ธ์คํด์ค์ ์ฐ๊ฒฐ
์ธ์คํด์ค๊ฐ ์คํ ์ค์ด๋ฉด ํด๋น ํ์ธ๋์ ์ ํํ๊ณ ์ฐ๊ฒฐ์ ํด๋ฆญํ์ฌ SSH ์ ๋ณด์ ์ก์ธ์คํฉ๋๋ค. ํ์๋ SSH ๋ช ๋ น์ ์ํ๋ ํฐ๋ฏธ๋์์ ์ฌ์ฉํ์ฌ ์ธ์คํด์ค์ ์ฐ๊ฒฐ์ ์ค์ ํฉ๋๋ค.
4๋จ๊ณ: ์คํ YOLOv5
์ธ์คํด์ค์ ๋ก๊ทธ์ธํ๋ฉด ์ด์ YOLOv5 ๋ฆฌํฌ์งํ ๋ฆฌ๋ฅผ ๋ณต์ ํ๊ณ Python 3.8 ์ด์ ํ๊ฒฝ์์ ์ข ์์ฑ์ ์ค์นํ ์ค๋น๊ฐ ๋ ๊ฒ์ ๋๋ค. YOLOv5 ์ ๋ชจ๋ธ๊ณผ ๋ฐ์ดํฐ ์ธํธ๊ฐ ์ต์ ๋ฆด๋ฆฌ์ค์์ ์๋์ผ๋ก ๋ค์ด๋ก๋๋ฉ๋๋ค.
git clone https://github.com/ultralytics/yolov5 # clone repository
cd yolov5
pip install -r requirements.txt # install dependencies
ํ๊ฒฝ์ด ์ค์ ๋๋ฉด ํ์ต, ์ ํจ์ฑ ๊ฒ์ฌ, ์ถ๋ก ์ํ, YOLOv5 ๋ชจ๋ธ ๋ด๋ณด๋ด๊ธฐ๋ฅผ ์์ํ ์ ์์ต๋๋ค:
# Train a model on your data
python train.py
# Validate the trained model for Precision, Recall, and mAP
python val.py --weights yolov5s.pt
# Run inference using the trained model on your images or videos
python detect.py --weights yolov5s.pt --source path/to/images
# Export the trained model to other formats for deployment
python export.py --weights yolov5s.pt --include onnx coreml tflite
์ ํ์ ์ถ๊ฐ ๊ธฐ๋ฅ
๋๊ท๋ชจ ๋ฐ์ดํฐ ์ธํธ์ ๊ตฌ์ธ์ฃผ๊ฐ ๋ ์ ์๋ ์ค์ ๋ฉ๋ชจ๋ฆฌ๋ฅผ ๋ ์ถ๊ฐํ๋ ค๋ฉด ์คํํ์ธ์:
sudo fallocate -l 64G /swapfile # allocate 64GB swap file
sudo chmod 600 /swapfile # modify permissions
sudo mkswap /swapfile # set up a Linux swap area
sudo swapon /swapfile # activate swap file
free -h # verify swap memory
And that's it! ๐ You've successfully created an AWS Deep Learning instance and run YOLOv5. Whether you're just starting with object detection or scaling up for production, this setup can help you achieve your machine learning goals. Happy training, validating, and deploying! If you encounter any hiccups along the way, the robust AWS documentation and the active Ultralytics community are here to support you.