์ด๋ฏธ์ง๋ท ๋ฐ์ดํฐ ์ธํธ
ImageNet is a large-scale database of annotated images designed for use in visual object recognition research. It contains over 14 million images, with each image annotated using WordNet synsets, making it one of the most extensive resources available for training deep learning models in computer vision tasks.
ImageNet ์ฌ์ ํ์ต ๋ชจ๋ธ
๋ชจ๋ธ | ํฌ๊ธฐ (ํฝ์ ) |
acc top1 |
ACC TOP5 |
์๋ CPU ONNX (ms) |
Speed T4 TensorRT10 (ms) |
๋งค๊ฐ๋ณ์ (M) |
FLOPs (B) at 640 |
---|---|---|---|---|---|---|---|
YOLO11n-cls | 224 | 70.0 | 89.4 | 5.0 ยฑ 0.3 | 1.1 ยฑ 0.0 | 1.6 | 3.3 |
YOLO11s-cls | 224 | 75.4 | 92.7 | 7.9 ยฑ 0.2 | 1.3 ยฑ 0.0 | 5.5 | 12.1 |
YOLO11m-cls | 224 | 77.3 | 93.9 | 17.2 ยฑ 0.4 | 2.0 ยฑ 0.0 | 10.4 | 39.3 |
YOLO11l-cls | 224 | 78.3 | 94.3 | 23.2 ยฑ 0.3 | 2.8 ยฑ 0.0 | 12.9 | 49.4 |
YOLO11x-cls | 224 | 79.5 | 94.9 | 41.4 ยฑ 0.9 | 3.8 ยฑ 0.0 | 28.4 | 110.4 |
์ฃผ์ ๊ธฐ๋ฅ
- ์ด๋ฏธ์ง๋ท์๋ ์์ฒ ๊ฐ์ ๊ฐ์ฒด ์นดํ ๊ณ ๋ฆฌ๋ฅผ ์์ฐ๋ฅด๋ 1,400๋ง ๊ฐ ์ด์์ ๊ณ ํด์๋ ์ด๋ฏธ์ง๊ฐ ํฌํจ๋์ด ์์ต๋๋ค.
- ๋ฐ์ดํฐ ์ธํธ๋ ์๋๋ท ๊ณ์ธต ๊ตฌ์กฐ์ ๋ฐ๋ผ ๊ตฌ์ฑ๋๋ฉฐ, ๊ฐ ๋์์ด๋ ์นดํ ๊ณ ๋ฆฌ๋ฅผ ๋ํ๋ ๋๋ค.
- ImageNet is widely used for training and benchmarking in the field of computer vision, particularly for image classification and object detection tasks.
- ๋งค๋ ์ด๋ฆฌ๋ ILSVRC(ImageNet ๋๊ท๋ชจ ์๊ฐ ์ธ์ ์ฑ๋ฆฐ์ง)๋ ์ปดํจํฐ ๋น์ ์ฐ๊ตฌ๋ฅผ ๋ฐ์ ์ํค๋ ๋ฐ ์ค์ํ ์ญํ ์ ํด์์ต๋๋ค.
๋ฐ์ดํฐ ์ธํธ ๊ตฌ์กฐ
์ด๋ฏธ์ง๋ท ๋ฐ์ดํฐ ์ธํธ๋ ์๋๋ท ๊ณ์ธต๊ตฌ์กฐ๋ฅผ ์ฌ์ฉํด ๊ตฌ์ฑ๋ฉ๋๋ค. ๊ณ์ธต ๊ตฌ์กฐ์ ๊ฐ ๋ ธ๋๋ ์นดํ ๊ณ ๋ฆฌ๋ฅผ ๋ํ๋ด๋ฉฐ, ๊ฐ ์นดํ ๊ณ ๋ฆฌ๋ ๋์์ด ๋ชจ์์ธ ์ ์ (synset)์ผ๋ก ์ค๋ช ๋ฉ๋๋ค. ์ด๋ฏธ์ง๋ท์ ์ด๋ฏธ์ง์๋ ํ๋ ์ด์์ ์ ์ ์ผ๋ก ์ฃผ์์ด ์ถ๊ฐ๋์ด ๋ค์ํ ๊ฐ์ฒด์ ๊ทธ ๊ด๊ณ๋ฅผ ์ธ์ํ๊ธฐ ์ํ ํ๋ จ ๋ชจ๋ธ์ ํ๋ถํ ๋ฆฌ์์ค๋ฅผ ์ ๊ณตํฉ๋๋ค.
์ด๋ฏธ์ง๋ท ๋๊ท๋ชจ ์๊ฐ ์ธ์ ์ฑ๋ฆฐ์ง(ILSVRC)
๋งค๋ ์ด๋ฆฌ๋ ImageNet ๋๊ท๋ชจ ์๊ฐ ์ธ์ ์ฑ๋ฆฐ์ง(ILSVRC) ๋ ์ปดํจํฐ ๋น์ ๋ถ์ผ์์ ์ค์ํ ํ์ฌ์ ๋๋ค. ์ด ํ์ฌ๋ ์ฐ๊ตฌ์์ ๊ฐ๋ฐ์๊ฐ ํ์คํ๋ ํ๊ฐ ์งํ๋ฅผ ํตํด ๋๊ท๋ชจ ๋ฐ์ดํฐ ์ธํธ์์ ์๊ณ ๋ฆฌ์ฆ๊ณผ ๋ชจ๋ธ์ ํ๊ฐํ ์ ์๋ ํ๋ซํผ์ ์ ๊ณตํด ์์ต๋๋ค. ILSVRC๋ ์ด๋ฏธ์ง ๋ถ๋ฅ, ๋ฌผ์ฒด ๊ฐ์ง ๋ฐ ๊ธฐํ ์ปดํจํฐ ๋น์ ์์ ์ ์ํ ๋ฅ๋ฌ๋ ๋ชจ๋ธ ๊ฐ๋ฐ์์ ์๋นํ ๋ฐ์ ์ ์ด๋์ด๋์ต๋๋ค.
์ ํ๋ฆฌ์ผ์ด์
์ด๋ฏธ์ง๋ท ๋ฐ์ดํฐ ์ธํธ๋ ์ด๋ฏธ์ง ๋ถ๋ฅ, ๋ฌผ์ฒด ๊ฐ์ง, ๋ฌผ์ฒด ์์น ํ์ ๋ฑ ๋ค์ํ ์ปดํจํฐ ๋น์ ์์ ์์ ๋ฅ๋ฌ๋ ๋ชจ๋ธ์ ํ๋ จํ๊ณ ํ๊ฐํ๋ ๋ฐ ๋๋ฆฌ ์ฌ์ฉ๋ฉ๋๋ค. AlexNet, VGG, ResNet๊ณผ ๊ฐ์ด ๋๋ฆฌ ์ฌ์ฉ๋๋ ๋ฅ ๋ฌ๋ ์ํคํ ์ฒ๋ ImageNet ๋ฐ์ดํฐ ์ธํธ๋ฅผ ์ฌ์ฉํ์ฌ ๊ฐ๋ฐ๋๊ณ ๋ฒค์น๋งํน๋์์ต๋๋ค.
์ฌ์ฉ๋ฒ
To train a deep learning model on the ImageNet dataset for 100 epochs with an image size of 224x224, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.
์ด์ฐจ ์์
์ํ ์ด๋ฏธ์ง ๋ฐ ์ฃผ์
ImageNet ๋ฐ์ดํฐ ์ธํธ์๋ ์์ฒ ๊ฐ์ ๋ฌผ์ฒด ์นดํ ๊ณ ๋ฆฌ๋ฅผ ์์ฐ๋ฅด๋ ๊ณ ํด์๋ ์ด๋ฏธ์ง๊ฐ ํฌํจ๋์ด ์์ด ์ปดํจํฐ ๋น์ ๋ชจ๋ธ์ ํ๋ จํ๊ณ ํ๊ฐํ ์ ์๋ ๋ค์ํ๊ณ ๊ด๋ฒ์ํ ๋ฐ์ดํฐ ์ธํธ๋ฅผ ์ ๊ณตํฉ๋๋ค. ๋ค์์ ๋ฐ์ดํฐ ์ธํธ์ ์ด๋ฏธ์ง ๋ช ๊ฐ์ง ์์์ ๋๋ค:
์ด ์๋ ์ด๋ฏธ์ง๋ท ๋ฐ์ดํฐ ์ธํธ์ ํฌํจ๋ ์ด๋ฏธ์ง์ ๋ค์์ฑ๊ณผ ๋ณต์ก์ฑ์ ๋ณด์ฌ์ฃผ๋ฉฐ, ๊ฐ๋ ฅํ ์ปดํจํฐ ๋น์ ๋ชจ๋ธ์ ํ๋ จํ๋ ๋ฐ ์์ด ๋ค์ํ ๋ฐ์ดํฐ ์ธํธ์ ์ค์์ฑ์ ๊ฐ์กฐํฉ๋๋ค.
์ธ์ฉ ๋ฐ ๊ฐ์ฌ
์ฐ๊ตฌ ๋๋ ๊ฐ๋ฐ ์์ ์ ImageNet ๋ฐ์ดํฐ์ ์ ์ฌ์ฉํ๋ ๊ฒฝ์ฐ ๋ค์ ๋ ผ๋ฌธ์ ์ธ์ฉํด ์ฃผ์ธ์:
@article{ILSVRC15,
author = {Olga Russakovsky and Jia Deng and Hao Su and Jonathan Krause and Sanjeev Satheesh and Sean Ma and Zhiheng Huang and Andrej Karpathy and Aditya Khosla and Michael Bernstein and Alexander C. Berg and Li Fei-Fei},
title={ImageNet Large Scale Visual Recognition Challenge},
year={2015},
journal={International Journal of Computer Vision (IJCV)},
volume={115},
number={3},
pages={211-252}
}
We would like to acknowledge the ImageNet team, led by Olga Russakovsky, Jia Deng, and Li Fei-Fei, for creating and maintaining the ImageNet dataset as a valuable resource for the machine learning and computer vision research community. For more information about the ImageNet dataset and its creators, visit the ImageNet website.
์์ฃผ ๋ฌป๋ ์ง๋ฌธ
์ด๋ฏธ์ง๋ท ๋ฐ์ดํฐ ์ธํธ๋ ๋ฌด์์ด๋ฉฐ ์ปดํจํฐ ๋น์ ์์ ์ด๋ป๊ฒ ์ฌ์ฉ๋๋์?
์ด๋ฏธ์ง๋ท ๋ฐ์ดํฐ ์ธํธ๋ ์๋๋ท ์ฑ์ ์ ์ฌ์ฉํด ๋ถ๋ฅ๋ 1,400๋ง ๊ฐ ์ด์์ ๊ณ ํด์๋ ์ด๋ฏธ์ง๋ก ๊ตฌ์ฑ๋ ๋๊ท๋ชจ ๋ฐ์ดํฐ๋ฒ ์ด์ค์ ๋๋ค. ์ด๋ฏธ์ง ๋ถ๋ฅ ๋ฐ ๊ฐ์ฒด ๊ฐ์ง๋ฅผ ํฌํจํ ์๊ฐ์ ๊ฐ์ฒด ์ธ์ ์ฐ๊ตฌ์ ๊ด๋ฒ์ํ๊ฒ ์ฌ์ฉ๋ฉ๋๋ค. ๋ฐ์ดํฐ ์ธํธ์ ์ฃผ์๊ณผ ๋ฐฉ๋ํ ์์ ๋ฅ๋ฌ๋ ๋ชจ๋ธ ํ์ต์ ์ํ ํ๋ถํ ๋ฆฌ์์ค๋ฅผ ์ ๊ณตํฉ๋๋ค. ํนํ AlexNet, VGG, ResNet๊ณผ ๊ฐ์ ๋ชจ๋ธ์ ImageNet์ ์ฌ์ฉํ์ฌ ํ๋ จ๋๊ณ ๋ฒค์น๋งํน๋์ด ์ปดํจํฐ ๋น์ ์ ๋ฐ์ ์ํค๋ ๋ฐ ์์ด ๊ทธ ์ญํ ์ ๋ณด์ฌ์ฃผ๊ณ ์์ต๋๋ค.
์ด๋ฏธ์ง๋ท ๋ฐ์ดํฐ ์ธํธ์์ ์ด๋ฏธ์ง ๋ถ๋ฅ๋ฅผ ์ํด ์ฌ์ ํ์ต๋ YOLO ๋ชจ๋ธ์ ์ฌ์ฉํ๋ ค๋ฉด ์ด๋ป๊ฒ ํด์ผ ํ๋์?
์ด๋ฏธ์ง๋ท ๋ฐ์ดํฐ ์ธํธ์์ ์ด๋ฏธ์ง ๋ถ๋ฅ๋ฅผ ์ํด ์ฌ์ ํ์ต๋ Ultralytics YOLO ๋ชจ๋ธ์ ์ฌ์ฉํ๋ ค๋ฉด ๋ค์ ๋จ๊ณ๋ฅผ ๋ฐ๋ฅด์ธ์:
์ด์ฐจ ์์
๋ณด๋ค ์ฌ์ธต์ ์ธ ๊ต์ก ์ง์นจ์ ๊ต์ก ํ์ด์ง๋ฅผ ์ฐธ์กฐํ์ธ์.
Why should I use the Ultralytics YOLO11 pretrained models for my ImageNet dataset projects?
Ultralytics YOLO11 pretrained models offer state-of-the-art performance in terms of speed and accuracy for various computer vision tasks. For example, the YOLO11n-cls model, with a top-1 accuracy of 69.0% and a top-5 accuracy of 88.3%, is optimized for real-time applications. Pretrained models reduce the computational resources required for training from scratch and accelerate development cycles. Learn more about the performance metrics of YOLO11 models in the ImageNet Pretrained Models section.
์ด๋ฏธ์ง๋ท ๋ฐ์ดํฐ ์ธํธ๋ ์ด๋ป๊ฒ ๊ตฌ์กฐํ๋์ด ์์ผ๋ฉฐ, ์ด๊ฒ์ด ์ค์ํ ์ด์ ๋ ๋ฌด์์ธ๊ฐ์?
์ด๋ฏธ์ง๋ท ๋ฐ์ดํฐ ์ธํธ๋ ์๋๋ท ๊ณ์ธต ๊ตฌ์กฐ๋ฅผ ์ฌ์ฉํ์ฌ ๊ตฌ์ฑ๋๋ฉฐ, ๊ณ์ธต ๊ตฌ์กฐ์ ๊ฐ ๋ ธ๋๋ ๋์์ด ์งํฉ(๋์์ด ์ฉ์ด์ ๋ชจ์)์ผ๋ก ์ค๋ช ๋๋ ์นดํ ๊ณ ๋ฆฌ๋ฅผ ๋ํ๋ ๋๋ค. ์ด ๊ตฌ์กฐ๋ ์์ธํ ์ฃผ์์ด ๊ฐ๋ฅํ๊ธฐ ๋๋ฌธ์ ๋ค์ํ ๊ฐ์ฒด๋ฅผ ์ธ์ํ๋ ๋ชจ๋ธ์ ํ๋ จํ๋ ๋ฐ ์ด์์ ์ ๋๋ค. ์ด๋ฏธ์ง๋ท์ ๋ค์์ฑ๊ณผ ํ๋ถํ ์ฃผ์์ ๊ฐ๋ ฅํ๊ณ ์ผ๋ฐํ ๊ฐ๋ฅํ ๋ฅ ๋ฌ๋ ๋ชจ๋ธ์ ๊ฐ๋ฐํ๋ ๋ฐ ์ ์ฉํ ๋ฐ์ดํฐ ์ธํธ์ ๋๋ค. ์ด ์กฐ์ง์ ๋ํ ์์ธํ ๋ด์ฉ์ ๋ฐ์ดํฐ ์ธํธ ๊ตฌ์กฐ ์น์ ์์ ํ์ธํ ์ ์์ต๋๋ค.
์ด๋ฏธ์ง๋ท ๋๊ท๋ชจ ์๊ฐ ์ธ์ ์ฑ๋ฆฐ์ง(ILSVRC)๋ ์ปดํจํฐ ๋น์ ์์ ์ด๋ค ์ญํ ์ ํ๋์?
The annual ImageNet Large Scale Visual Recognition Challenge (ILSVRC) has been pivotal in driving advancements in computer vision by providing a competitive platform for evaluating algorithms on a large-scale, standardized dataset. It offers standardized evaluation metrics, fostering innovation and development in areas such as image classification, object detection, and image segmentation. The challenge has continuously pushed the boundaries of what is possible with deep learning and computer vision technologies.