์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ

COCO8-Seg ๋ฐ์ดํ„ฐ ์„ธํŠธ

์†Œ๊ฐœ

Ultralytics COCO8-Seg๋Š” ์ž‘์ง€๋งŒ ๋‹ค์šฉ๋„๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์ธ์Šคํ„ด์Šค ๋ถ„ํ•  ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ, COCO train 2017 ์„ธํŠธ์˜ ์ฒซ 8๊ฐœ ์ด๋ฏธ์ง€ ์ค‘ ํ›ˆ๋ จ์šฉ 4๊ฐœ์™€ ๊ฒ€์ฆ์šฉ 4๊ฐœ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์„ธ๋ถ„ํ™” ๋ชจ๋ธ์„ ํ…Œ์ŠคํŠธํ•˜๊ณ  ๋””๋ฒ„๊น…ํ•˜๊ฑฐ๋‚˜ ์ƒˆ๋กœ์šด ํƒ์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์‹คํ—˜ํ•˜๋Š” ๋ฐ ์ด์ƒ์ ์ž…๋‹ˆ๋‹ค. 8๊ฐœ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์–ด ์‰ฝ๊ฒŒ ๊ด€๋ฆฌํ•  ์ˆ˜ ์žˆ์„ ๋งŒํผ ์ž‘์ง€๋งŒ, ํ›ˆ๋ จ ํŒŒ์ดํ”„๋ผ์ธ์˜ ์˜ค๋ฅ˜๋ฅผ ํ…Œ์ŠคํŠธํ•˜๊ณ  ๋” ํฐ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ํ›ˆ๋ จํ•˜๊ธฐ ์ „์— ๊ฑด์ „์„ฑ ๊ฒ€์‚ฌ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ์„ ๋งŒํผ ๋‹ค์–‘ํ•ฉ๋‹ˆ๋‹ค.

์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” Ultralytics HUB ๋ฐ YOLO11.

๋ฐ์ดํ„ฐ ์„ธํŠธ YAML

๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์„ฑ์„ ์ •์˜ํ•˜๋Š” ๋ฐ๋Š” YAML(๋˜ ๋‹ค๋ฅธ ๋งˆํฌ์—… ์–ธ์–ด) ํŒŒ์ผ์ด ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ฒฝ๋กœ, ํด๋ž˜์Šค ๋ฐ ๊ธฐํƒ€ ๊ด€๋ จ ์ •๋ณด์— ๋Œ€ํ•œ ์ •๋ณด๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. COCO8-Seg ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ฒฝ์šฐ, ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ coco8-seg.yaml ํŒŒ์ผ์€ ๋‹ค์Œ ์œ„์น˜์—์„œ ์œ ์ง€๋ฉ๋‹ˆ๋‹ค. https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco8-seg.yaml.

ultralytics/cfg/datasets/coco8-seg.yaml

# Ultralytics YOLO ๐Ÿš€, AGPL-3.0 license
# COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
# Example usage: yolo train data=coco8-seg.yaml
# parent
# โ”œโ”€โ”€ ultralytics
# โ””โ”€โ”€ datasets
#     โ””โ”€โ”€ coco8-seg  โ† downloads here (1 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8-seg # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)

# Classes
names:
  0: person
  1: bicycle
  2: car
  3: motorcycle
  4: airplane
  5: bus
  6: train
  7: truck
  8: boat
  9: traffic light
  10: fire hydrant
  11: stop sign
  12: parking meter
  13: bench
  14: bird
  15: cat
  16: dog
  17: horse
  18: sheep
  19: cow
  20: elephant
  21: bear
  22: zebra
  23: giraffe
  24: backpack
  25: umbrella
  26: handbag
  27: tie
  28: suitcase
  29: frisbee
  30: skis
  31: snowboard
  32: sports ball
  33: kite
  34: baseball bat
  35: baseball glove
  36: skateboard
  37: surfboard
  38: tennis racket
  39: bottle
  40: wine glass
  41: cup
  42: fork
  43: knife
  44: spoon
  45: bowl
  46: banana
  47: apple
  48: sandwich
  49: orange
  50: broccoli
  51: carrot
  52: hot dog
  53: pizza
  54: donut
  55: cake
  56: chair
  57: couch
  58: potted plant
  59: bed
  60: dining table
  61: toilet
  62: tv
  63: laptop
  64: mouse
  65: remote
  66: keyboard
  67: cell phone
  68: microwave
  69: oven
  70: toaster
  71: sink
  72: refrigerator
  73: book
  74: clock
  75: vase
  76: scissors
  77: teddy bear
  78: hair drier
  79: toothbrush

# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-seg.zip

์‚ฌ์šฉ๋ฒ•

์ด๋ฏธ์ง€ ํฌ๊ธฐ๊ฐ€ 640์ธ COCO8-Seg ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•ด 100๊ฐœ์˜ ์—ํฌํฌ์— ๋Œ€ํ•ด YOLO11n-seg ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ๋‹ค์Œ ์ฝ”๋“œ ์กฐ๊ฐ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ธ์ˆ˜์˜ ์ „์ฒด ๋ชฉ๋ก์€ ๋ชจ๋ธ ํ•™์Šต ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์—ด์ฐจ ์˜ˆ์‹œ

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-seg.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco8-seg.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo segment train data=coco8-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640

์ƒ˜ํ”Œ ์ด๋ฏธ์ง€ ๋ฐ ์ฃผ์„

๋‹ค์Œ์€ COCO8-Seg ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ด๋ฏธ์ง€์™€ ํ•ด๋‹น ์ฃผ์„์˜ ๋ช‡ ๊ฐ€์ง€ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค:

๋ฐ์ดํ„ฐ ์„ธํŠธ ์ƒ˜ํ”Œ ์ด๋ฏธ์ง€

  • ๋ชจ์ž์ดํฌ ์ด๋ฏธ์ง€: ์ด ์ด๋ฏธ์ง€๋Š” ๋ชจ์ž์ดํฌ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋œ ํ›ˆ๋ จ ๋ฐฐ์น˜์˜ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค. ๋ชจ์ž์ดํฌ๋Š” ์—ฌ๋Ÿฌ ์ด๋ฏธ์ง€๋ฅผ ํ•˜๋‚˜์˜ ์ด๋ฏธ์ง€๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ฐ ํ›ˆ๋ จ ๋ฐฐ์น˜ ๋‚ด์—์„œ ๋‹ค์–‘ํ•œ ๊ฐœ์ฒด์™€ ์žฅ๋ฉด์„ ๋Š˜๋ฆฌ๊ธฐ ์œ„ํ•ด ํ›ˆ๋ จ ์ค‘์— ์‚ฌ์šฉ๋˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๊ฐ์ฒด ํฌ๊ธฐ, ์ข…ํšก๋น„ ๋ฐ ์ปจํ…์ŠคํŠธ์— ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๋ชจ๋ธ์˜ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด ์˜ˆ๋Š” COCO8-Seg ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ํฌํ•จ๋œ ์ด๋ฏธ์ง€์˜ ๋‹ค์–‘์„ฑ๊ณผ ๋ณต์žก์„ฑ, ๊ทธ๋ฆฌ๊ณ  ํ•™์Šต ๊ณผ์ •์—์„œ ๋ชจ์ž์ดํฌ ์‚ฌ์šฉ์˜ ์ด์ ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

์ธ์šฉ ๋ฐ ๊ฐ์‚ฌ

์—ฐ๊ตฌ ๋˜๋Š” ๊ฐœ๋ฐœ ์ž‘์—…์— COCO ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ๋‹ค์Œ ๋…ผ๋ฌธ์„ ์ธ์šฉํ•ด ์ฃผ์„ธ์š”:

@misc{lin2015microsoft,
      title={Microsoft COCO: Common Objects in Context},
      author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollรกr},
      year={2015},
      eprint={1405.0312},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

์ปดํ“จํ„ฐ ๋น„์ „ ์ปค๋ฎค๋‹ˆํ‹ฐ๋ฅผ ์œ„ํ•ด ์ด ๊ท€์ค‘ํ•œ ๋ฆฌ์†Œ์Šค๋ฅผ ๋งŒ๋“ค๊ณ  ์œ ์ง€ ๊ด€๋ฆฌํ•ด ์ฃผ์‹  COCO ์ปจ์†Œ์‹œ์—„์— ๊ฐ์‚ฌ์˜ ๋ง์”€์„ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ ๋ฐ ์ œ์ž‘์ž์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ ์›น์‚ฌ์ดํŠธ๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ

COCO8-Seg ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋ฌด์—‡์ด๋ฉฐ Ultralytics YOLO11 ์—์„œ ์–ด๋–ป๊ฒŒ ์‚ฌ์šฉ๋˜๋‚˜์š”?

COCO8-Seg ๋ฐ์ดํ„ฐ ์„ธํŠธ ๋Š” Ultralytics ์˜ ์ปดํŒฉํŠธ ์ธ์Šคํ„ด์Šค ๋ถ„ํ•  ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ, COCO train 2017 ์„ธํŠธ์˜ ์ฒซ 8๊ฐœ ์ด๋ฏธ์ง€(ํ›ˆ๋ จ์šฉ ์ด๋ฏธ์ง€ 4๊ฐœ์™€ ๊ฒ€์ฆ์šฉ ์ด๋ฏธ์ง€ 4๊ฐœ)๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์„ธ๋ถ„ํ™” ๋ชจ๋ธ์„ ํ…Œ์ŠคํŠธ ๋ฐ ๋””๋ฒ„๊น…ํ•˜๊ฑฐ๋‚˜ ์ƒˆ๋กœ์šด ํƒ์ง€ ๋ฐฉ๋ฒ•์„ ์‹คํ—˜ํ•˜๋Š” ๋ฐ ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค. ํŠนํžˆ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ฒฝ์šฐ์— ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค. Ultralytics YOLO11 ์™€ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜๋ฉด ๋” ํฐ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ ํ™•์žฅํ•˜๊ธฐ ์ „์— ๋น ๋ฅธ ๋ฐ˜๋ณต๊ณผ ํŒŒ์ดํ”„๋ผ์ธ ์˜ค๋ฅ˜ ํ™•์ธ์„ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ž์„ธํ•œ ์‚ฌ์šฉ๋ฒ•์€ ๋ชจ๋ธ ํ›ˆ๋ จ ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

COCO8-Seg ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ YOLO11n-seg ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•˜๋‚˜์š”?

์ด๋ฏธ์ง€ ํฌ๊ธฐ๊ฐ€ 640์ธ COCO8-Seg ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•ด 100๊ฐœ ์—ํฌํฌ์— ๋Œ€ํ•ด YOLO11n-seg ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด Python ๋˜๋Š” CLI ๋ช…๋ น์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ๊ฐ„๋‹จํ•œ ์˜ˆ์ œ์ž…๋‹ˆ๋‹ค:

์—ด์ฐจ ์˜ˆ์‹œ

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-seg.pt")  # Load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco8-seg.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo segment train data=coco8-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640

์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ธ์ˆ˜ ๋ฐ ๊ตฌ์„ฑ ์˜ต์…˜์— ๋Œ€ํ•œ ์ž์„ธํ•œ ์„ค๋ช…์€ ๊ต์œก ๋ฌธ์„œ๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

COCO8-Seg ๋ฐ์ดํ„ฐ ์„ธํŠธ๊ฐ€ ๋ชจ๋ธ ๊ฐœ๋ฐœ๊ณผ ๋””๋ฒ„๊น…์— ์ค‘์š”ํ•œ ์ด์œ ๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”?

COCO8-Seg ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์ž‘์€ ํฌ๊ธฐ์—์„œ ๊ด€๋ฆฌ์„ฑ๊ณผ ๋‹ค์–‘์„ฑ์„ ์ œ๊ณตํ•˜๋Š” ๋ฐ ์ด์ƒ์ ์ž…๋‹ˆ๋‹ค. ๋‹จ 8๊ฐœ์˜ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์–ด ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์˜ค๋ฒ„ํ—ค๋“œ ์—†์ด ์„ธ๋ถ„ํ™” ๋ชจ๋ธ์ด๋‚˜ ์ƒˆ๋กœ์šด ํƒ์ง€ ์ ‘๊ทผ๋ฒ•์„ ๋น ๋ฅด๊ฒŒ ํ…Œ์ŠคํŠธํ•˜๊ณ  ๋””๋ฒ„๊น…ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•œ ๊ด‘๋ฒ”์œ„ํ•œ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๊ธฐ ์ „์— ๊ฑด์ „์„ฑ ๊ฒ€์‚ฌ ๋ฐ ํŒŒ์ดํ”„๋ผ์ธ ์˜ค๋ฅ˜ ์‹๋ณ„์„ ์œ„ํ•œ ํšจ์œจ์ ์ธ ๋„๊ตฌ๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—์„œ ๋ฐ์ดํ„ฐ ์„ธํŠธ ํ˜•์‹์— ๋Œ€ํ•ด ์ž์„ธํžˆ ์•Œ์•„๋ณด์„ธ์š”.

COCO8-Seg ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ YAML ๊ตฌ์„ฑ ํŒŒ์ผ์€ ์–ด๋””์—์„œ ์ฐพ์„ ์ˆ˜ ์žˆ๋‚˜์š”?

COCO8-Seg ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•œ YAML ๊ตฌ์„ฑ ํŒŒ์ผ์€ Ultralytics ๋ฆฌํฌ์ง€ํ† ๋ฆฌ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—์„œ ์ง์ ‘ ํŒŒ์ผ์— ์•ก์„ธ์Šคํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. YAML ํŒŒ์ผ์—๋Š” ๋ชจ๋ธ ํ•™์Šต ๋ฐ ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ์— ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ฒฝ๋กœ, ํด๋ž˜์Šค ๋ฐ ๊ตฌ์„ฑ ์„ค์ •์— ๋Œ€ํ•œ ํ•„์ˆ˜ ์ •๋ณด๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

COCO8-Seg ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ ํ›ˆ๋ จํ•  ๋•Œ ๋ชจ์ž์ดํ‚น์„ ์‚ฌ์šฉํ•˜๋ฉด ์–ด๋–ค ์ด์ ์ด ์žˆ๋‚˜์š”?

ํ›ˆ๋ จ ์ค‘์— ๋ชจ์ž์ดํ‚น์„ ์‚ฌ์šฉํ•˜๋ฉด ๊ฐ ํ›ˆ๋ จ ๋ฐฐ์น˜์—์„œ ๊ฐœ์ฒด์™€ ์žฅ๋ฉด์˜ ๋‹ค์–‘์„ฑ๊ณผ ๋‹ค์–‘์„ฑ์„ ๋†’์ด๋Š” ๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค. ์ด ๊ธฐ์ˆ ์€ ์—ฌ๋Ÿฌ ์ด๋ฏธ์ง€๋ฅผ ํ•˜๋‚˜์˜ ํ•ฉ์„ฑ ์ด๋ฏธ์ง€๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ ์žฅ๋ฉด ๋‚ด์˜ ๋‹ค์–‘ํ•œ ๊ฐ์ฒด ํฌ๊ธฐ, ์ข…ํšก๋น„ ๋ฐ ์ปจํ…์ŠคํŠธ์— ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๋ชจ๋ธ์˜ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ๋ชจ์ž์ด์‹ฑ์€ ๋ชจ๋ธ์˜ ๊ฒฌ๊ณ ์„ฑ๊ณผ ์ •ํ™•์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ์œ ์šฉํ•˜๋ฉฐ, ํŠนํžˆ COCO8-Seg์™€ ๊ฐ™์€ ์†Œ๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ ์ž‘์—…ํ•  ๋•Œ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋ชจ์ž์ดํฌ๋œ ์ด๋ฏธ์ง€์˜ ์˜ˆ๋Š” ์ƒ˜ํ”Œ ์ด๋ฏธ์ง€ ๋ฐ ์ฃผ์„ ์„น์…˜์„ ์ฐธ์กฐํ•˜์„ธ์š”.

๐Ÿ“…1 ๋…„ ์ „ ์ƒ์„ฑ๋จ โœ๏ธ 2๊ฐœ์›” ์ „ ์—…๋ฐ์ดํŠธ๋จ

๋Œ“๊ธ€