μ½˜ν…μΈ λ‘œ κ±΄λ„ˆλ›°κΈ°

물체 감지

객체 감지 μ˜ˆμ‹œ

객체 κ°μ§€λŠ” 이미지 λ˜λŠ” λΉ„λ””μ˜€ μŠ€νŠΈλ¦Όμ—μ„œ 객체의 μœ„μΉ˜μ™€ 클래슀λ₯Ό μ‹λ³„ν•˜λŠ” μž‘μ—…μž…λ‹ˆλ‹€.

객체 κ°μ§€κΈ°μ˜ 좜λ ₯은 μ΄λ―Έμ§€μ—μ„œ 객체λ₯Ό λ‘˜λŸ¬μ‹ΈλŠ” 경계 μƒμž 집합과 각 μƒμžμ— λŒ€ν•œ 클래슀 λ ˆμ΄λΈ” 및 신뒰도 점수둜 κ΅¬μ„±λ©λ‹ˆλ‹€. 객체 κ°μ§€λŠ” μž₯λ©΄μ—μ„œ 관심 μžˆλŠ” 객체λ₯Ό 식별해야 ν•˜μ§€λ§Œ 객체의 μ •ν™•ν•œ μœ„μΉ˜λ‚˜ λͺ¨μ–‘을 μ •ν™•νžˆ μ•Œ ν•„μš”λŠ” μ—†λŠ” κ²½μš°μ— μ ν•©ν•©λ‹ˆλ‹€.



Watch: 사전 ν•™μŠ΅λœ Ultralytics YOLOv8 λͺ¨λΈμ„ μ‚¬μš©ν•œ 객체 감지.

팁

YOLOv8 감지 λͺ¨λΈμ€ κΈ°λ³Έ YOLOv8 λͺ¨λΈμž…λ‹ˆλ‹€. yolov8n.pt 에 λŒ€ν•œ 사전 κ΅μœ‘μ„ λ°›μ•˜μœΌλ©° COCO.

λͺ¨λΈ

YOLOv8 사전 ν•™μŠ΅λœ 감지 λͺ¨λΈμ΄ 여기에 ν‘œμ‹œλ©λ‹ˆλ‹€. 감지, μ„Έκ·Έλ¨ΌνŠΈ 및 포즈 λͺ¨λΈμ€ COCO 데이터 μ„ΈνŠΈμ— λŒ€ν•΄ 사전 ν•™μŠ΅λœ 반면, λΆ„λ₯˜ λͺ¨λΈμ€ ImageNet 데이터 μ„ΈνŠΈμ— λŒ€ν•΄ 사전 ν•™μŠ΅λ˜μ—ˆμŠ΅λ‹ˆλ‹€.

λͺ¨λΈμ€ 처음 μ‚¬μš©ν•  λ•Œ μ΅œμ‹  Ultralytics λ¦΄λ¦¬μŠ€μ—μ„œ μžλ™μœΌλ‘œ λ‹€μš΄λ‘œλ“œλ©λ‹ˆλ‹€.

λͺ¨λΈ 크기
(ν”½μ…€)
mAPval
50-95
속도
CPU ONNX
(ms)
속도
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n 640 37.3 80.4 0.99 3.2 8.7
YOLOv8s 640 44.9 128.4 1.20 11.2 28.6
YOLOv8m 640 50.2 234.7 1.83 25.9 78.9
YOLOv8l 640 52.9 375.2 2.39 43.7 165.2
YOLOv8x 640 53.9 479.1 3.53 68.2 257.8
  • mAPval 값은 단일 λͺ¨λΈ 단일 μŠ€μΌ€μΌμ— λŒ€ν•œ κ²ƒμž…λ‹ˆλ‹€. COCO val2017 λ°μ΄ν„°μ„ΈνŠΈ.
    볡제 λŒ€μƒ yolo val detect data=coco.yaml device=0
  • 속도 λ₯Ό μ‚¬μš©ν•˜μ—¬ COCO κ°’ 이미지에 λŒ€ν•œ 평균값을 Amazon EC2 P4d μΈμŠ€ν„΄μŠ€μž…λ‹ˆλ‹€.
    볡제 λŒ€μƒ yolo val detect data=coco128.yaml batch=1 device=0|cpu

κΈ°μ°¨

이미지 크기 640으둜 100개의 에포크에 λŒ€ν•΄ COCO128 데이터 μ„ΈνŠΈμ—μ„œ YOLOv8n 을 ν›ˆλ ¨ν•©λ‹ˆλ‹€. μ‚¬μš© κ°€λŠ₯ν•œ 인수의 전체 λͺ©λ‘μ€ ꡬ성 νŽ˜μ΄μ§€λ₯Ό μ°Έμ‘°ν•˜μ„Έμš”.

예제

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.yaml')  # build a new model from YAML
model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights

# Train the model
results = model.train(data='coco128.yaml', epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640

데이터 집합 ν˜•μ‹

YOLO 탐지 데이터 μ„ΈνŠΈ ν˜•μ‹μ€ 데이터 μ„ΈνŠΈ κ°€μ΄λ“œμ—μ„œ μžμ„Ένžˆ 확인할 수 μžˆμŠ΅λ‹ˆλ‹€. κΈ°μ‘΄ 데이터셋을 λ‹€λ₯Έ ν˜•μ‹(예: COCO λ“±)μ—μ„œ YOLO ν˜•μ‹μœΌλ‘œ λ³€ν™˜ν•˜λ €λ©΄ Ultralytics μ—μ„œ JSON2YOLO 도ꡬλ₯Ό μ‚¬μš©ν•˜μ„Έμš”.

Val

COCO128 데이터 μ„ΈνŠΈμ— λŒ€ν•΄ ν•™μŠ΅λœ YOLOv8n λͺ¨λΈ 정확도λ₯Ό κ²€μ¦ν•©λ‹ˆλ‹€. 인수λ₯Ό 전달할 ν•„μš”κ°€ μ—†μŠ΅λ‹ˆλ‹€. model ꡐ윑 μœ μ§€ data 및 인수λ₯Ό λͺ¨λΈ μ†μ„±μœΌλ‘œ μ‚¬μš©ν•©λ‹ˆλ‹€.

예제

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map    # map50-95
metrics.box.map50  # map50
metrics.box.map75  # map75
metrics.box.maps   # a list contains map50-95 of each category
yolo detect val model=yolov8n.pt  # val official model
yolo detect val model=path/to/best.pt  # val custom model

예츑

ν•™μŠ΅λœ YOLOv8n λͺ¨λΈμ„ μ‚¬μš©ν•˜μ—¬ 이미지에 λŒ€ν•œ μ˜ˆμΈ‘μ„ μ‹€ν–‰ν•©λ‹ˆλ‹€.

예제

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom model

# Predict with the model
results = model('https://ultralytics.com/images/bus.jpg')  # predict on an image
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

전체 보기 predict λͺ¨λ“œ μ„ΈλΆ€ μ •λ³΄μ—μ„œ 예츑 νŽ˜μ΄μ§€λ‘œ μ΄λ™ν•©λ‹ˆλ‹€.

내보내기

YOLOv8n λͺ¨λΈμ„ ONNX, CoreML λ“±κ³Ό 같은 λ‹€λ₯Έ ν˜•μ‹μœΌλ‘œ λ‚΄λ³΄λƒ…λ‹ˆλ‹€.

예제

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.pt')  # load an official model
model = YOLO('path/to/best.pt')  # load a custom trained model

# Export the model
model.export(format='onnx')
yolo export model=yolov8n.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

μ‚¬μš© κ°€λŠ₯ν•œ YOLOv8 내보내기 ν˜•μ‹μ€ μ•„λž˜ ν‘œμ— λ‚˜μ™€ μžˆμŠ΅λ‹ˆλ‹€. 내보낸 λͺ¨λΈμ—μ„œ 직접 μ˜ˆμΈ‘ν•˜κ±°λ‚˜ 검증할 수 μžˆμŠ΅λ‹ˆλ‹€. yolo predict model=yolov8n.onnx. 내보내기가 μ™„λ£Œλœ ν›„ λͺ¨λΈμ— λŒ€ν•œ μ‚¬μš© μ˜ˆκ°€ ν‘œμ‹œλ©λ‹ˆλ‹€.

ν˜•μ‹ format 인수 λͺ¨λΈ 메타데이터 인수
PyTorch - yolov8n.pt βœ… -
TorchScript torchscript yolov8n.torchscript βœ… imgsz, optimize
ONNX onnx yolov8n.onnx βœ… imgsz, half, dynamic, simplify, opset
OpenVINO openvino yolov8n_openvino_model/ βœ… imgsz, half, int8
TensorRT engine yolov8n.engine βœ… imgsz, half, dynamic, simplify, workspace
CoreML coreml yolov8n.mlpackage βœ… imgsz, half, int8, nms
TF SavedModel saved_model yolov8n_saved_model/ βœ… imgsz, keras, int8
TF GraphDef pb yolov8n.pb ❌ imgsz
TF Lite tflite yolov8n.tflite βœ… imgsz, half, int8
TF Edge TPU edgetpu yolov8n_edgetpu.tflite βœ… imgsz
TF.js tfjs yolov8n_web_model/ βœ… imgsz, half, int8
PaddlePaddle paddle yolov8n_paddle_model/ βœ… imgsz
ncnn ncnn yolov8n_ncnn_model/ βœ… imgsz, half

전체 보기 export μ„ΈλΆ€ μ •λ³΄μ—μ„œ 내보내기 νŽ˜μ΄μ§€λ‘œ μ΄λ™ν•©λ‹ˆλ‹€.



생성됨 2023-11-12, μ—…λ°μ΄νŠΈλ¨ 2024-02-03
μž‘μ„±μž: glenn-jocher (10), Laughing-q (1), AyushExel (1)

λŒ“κΈ€