Набор данных Objects365
Набор данных Objects365 - это крупномасштабный высококачественный набор данных, предназначенный для развития исследований в области обнаружения объектов с упором на разнообразные объекты в природе. Созданный группой исследователей Megvii, набор данных предлагает широкий спектр изображений высокого разрешения с полным набором аннотированных ограничительных рамок, охватывающих 365 категорий объектов.
Основные характеристики
- Objects365 содержит 365 категорий объектов, 2 миллиона изображений и более 30 миллионов ограничительных рамок.
- Набор данных включает в себя различные объекты в различных сценариях, обеспечивая богатый и сложный эталон для задач обнаружения объектов.
- Аннотации включают ограничительные рамки для объектов, что делает его пригодным для обучения и оценки моделей обнаружения объектов.
- Предварительно обученные модели Objects365 значительно превосходят предварительно обученные модели ImageNet, что приводит к лучшей обобщенности при решении различных задач.
Структура набора данных
Набор данных Objects365 представляет собой единый набор изображений с соответствующими аннотациями:
- Изображения: Набор данных включает в себя 2 миллиона изображений высокого разрешения, каждое из которых содержит различные объекты из 365 категорий.
- Аннотации: Изображения аннотированы более чем 30 миллионами ограничительных рамок, что позволяет получить исчерпывающую достоверную информацию для задач обнаружения объектов.
Приложения
Набор данных Objects365 широко используется для обучения и оценки моделей глубокого обучения в задачах обнаружения объектов. Разнообразный набор категорий объектов и высококачественные аннотации делают этот набор данных ценным ресурсом для исследователей и практиков в области компьютерного зрения.
Набор данных YAML
Для определения конфигурации набора данных используется файл YAML (Yet Another Markup Language). Он содержит информацию о путях, классах и другую необходимую информацию о наборе данных. В случае с набором данных Objects365 файл Objects365.yaml
файл хранится по адресу https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/Objects365.yaml.
ultralytics/cfg/datasets/Objects365.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Objects365 dataset https://www.objects365.org/ by Megvii
# Documentation: https://docs.ultralytics.com/datasets/detect/objects365/
# Example usage: yolo train data=Objects365.yaml
# parent
# ├── ultralytics
# └── datasets
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Objects365 # dataset root dir
train: images/train # train images (relative to 'path') 1742289 images
val: images/val # val images (relative to 'path') 80000 images
test: # test images (optional)
# Classes
names:
0: Person
1: Sneakers
2: Chair
3: Other Shoes
4: Hat
5: Car
6: Lamp
7: Glasses
8: Bottle
9: Desk
10: Cup
11: Street Lights
12: Cabinet/shelf
13: Handbag/Satchel
14: Bracelet
15: Plate
16: Picture/Frame
17: Helmet
18: Book
19: Gloves
20: Storage box
21: Boat
22: Leather Shoes
23: Flower
24: Bench
25: Potted Plant
26: Bowl/Basin
27: Flag
28: Pillow
29: Boots
30: Vase
31: Microphone
32: Necklace
33: Ring
34: SUV
35: Wine Glass
36: Belt
37: Monitor/TV
38: Backpack
39: Umbrella
40: Traffic Light
41: Speaker
42: Watch
43: Tie
44: Trash bin Can
45: Slippers
46: Bicycle
47: Stool
48: Barrel/bucket
49: Van
50: Couch
51: Sandals
52: Basket
53: Drum
54: Pen/Pencil
55: Bus
56: Wild Bird
57: High Heels
58: Motorcycle
59: Guitar
60: Carpet
61: Cell Phone
62: Bread
63: Camera
64: Canned
65: Truck
66: Traffic cone
67: Cymbal
68: Lifesaver
69: Towel
70: Stuffed Toy
71: Candle
72: Sailboat
73: Laptop
74: Awning
75: Bed
76: Faucet
77: Tent
78: Horse
79: Mirror
80: Power outlet
81: Sink
82: Apple
83: Air Conditioner
84: Knife
85: Hockey Stick
86: Paddle
87: Pickup Truck
88: Fork
89: Traffic Sign
90: Balloon
91: Tripod
92: Dog
93: Spoon
94: Clock
95: Pot
96: Cow
97: Cake
98: Dining Table
99: Sheep
100: Hanger
101: Blackboard/Whiteboard
102: Napkin
103: Other Fish
104: Orange/Tangerine
105: Toiletry
106: Keyboard
107: Tomato
108: Lantern
109: Machinery Vehicle
110: Fan
111: Green Vegetables
112: Banana
113: Baseball Glove
114: Airplane
115: Mouse
116: Train
117: Pumpkin
118: Soccer
119: Skiboard
120: Luggage
121: Nightstand
122: Tea pot
123: Telephone
124: Trolley
125: Head Phone
126: Sports Car
127: Stop Sign
128: Dessert
129: Scooter
130: Stroller
131: Crane
132: Remote
133: Refrigerator
134: Oven
135: Lemon
136: Duck
137: Baseball Bat
138: Surveillance Camera
139: Cat
140: Jug
141: Broccoli
142: Piano
143: Pizza
144: Elephant
145: Skateboard
146: Surfboard
147: Gun
148: Skating and Skiing shoes
149: Gas stove
150: Donut
151: Bow Tie
152: Carrot
153: Toilet
154: Kite
155: Strawberry
156: Other Balls
157: Shovel
158: Pepper
159: Computer Box
160: Toilet Paper
161: Cleaning Products
162: Chopsticks
163: Microwave
164: Pigeon
165: Baseball
166: Cutting/chopping Board
167: Coffee Table
168: Side Table
169: Scissors
170: Marker
171: Pie
172: Ladder
173: Snowboard
174: Cookies
175: Radiator
176: Fire Hydrant
177: Basketball
178: Zebra
179: Grape
180: Giraffe
181: Potato
182: Sausage
183: Tricycle
184: Violin
185: Egg
186: Fire Extinguisher
187: Candy
188: Fire Truck
189: Billiards
190: Converter
191: Bathtub
192: Wheelchair
193: Golf Club
194: Briefcase
195: Cucumber
196: Cigar/Cigarette
197: Paint Brush
198: Pear
199: Heavy Truck
200: Hamburger
201: Extractor
202: Extension Cord
203: Tong
204: Tennis Racket
205: Folder
206: American Football
207: earphone
208: Mask
209: Kettle
210: Tennis
211: Ship
212: Swing
213: Coffee Machine
214: Slide
215: Carriage
216: Onion
217: Green beans
218: Projector
219: Frisbee
220: Washing Machine/Drying Machine
221: Chicken
222: Printer
223: Watermelon
224: Saxophone
225: Tissue
226: Toothbrush
227: Ice cream
228: Hot-air balloon
229: Cello
230: French Fries
231: Scale
232: Trophy
233: Cabbage
234: Hot dog
235: Blender
236: Peach
237: Rice
238: Wallet/Purse
239: Volleyball
240: Deer
241: Goose
242: Tape
243: Tablet
244: Cosmetics
245: Trumpet
246: Pineapple
247: Golf Ball
248: Ambulance
249: Parking meter
250: Mango
251: Key
252: Hurdle
253: Fishing Rod
254: Medal
255: Flute
256: Brush
257: Penguin
258: Megaphone
259: Corn
260: Lettuce
261: Garlic
262: Swan
263: Helicopter
264: Green Onion
265: Sandwich
266: Nuts
267: Speed Limit Sign
268: Induction Cooker
269: Broom
270: Trombone
271: Plum
272: Rickshaw
273: Goldfish
274: Kiwi fruit
275: Router/modem
276: Poker Card
277: Toaster
278: Shrimp
279: Sushi
280: Cheese
281: Notepaper
282: Cherry
283: Pliers
284: CD
285: Pasta
286: Hammer
287: Cue
288: Avocado
289: Hami melon
290: Flask
291: Mushroom
292: Screwdriver
293: Soap
294: Recorder
295: Bear
296: Eggplant
297: Board Eraser
298: Coconut
299: Tape Measure/Ruler
300: Pig
301: Showerhead
302: Globe
303: Chips
304: Steak
305: Crosswalk Sign
306: Stapler
307: Camel
308: Formula 1
309: Pomegranate
310: Dishwasher
311: Crab
312: Hoverboard
313: Meatball
314: Rice Cooker
315: Tuba
316: Calculator
317: Papaya
318: Antelope
319: Parrot
320: Seal
321: Butterfly
322: Dumbbell
323: Donkey
324: Lion
325: Urinal
326: Dolphin
327: Electric Drill
328: Hair Dryer
329: Egg tart
330: Jellyfish
331: Treadmill
332: Lighter
333: Grapefruit
334: Game board
335: Mop
336: Radish
337: Baozi
338: Target
339: French
340: Spring Rolls
341: Monkey
342: Rabbit
343: Pencil Case
344: Yak
345: Red Cabbage
346: Binoculars
347: Asparagus
348: Barbell
349: Scallop
350: Noddles
351: Comb
352: Dumpling
353: Oyster
354: Table Tennis paddle
355: Cosmetics Brush/Eyeliner Pencil
356: Chainsaw
357: Eraser
358: Lobster
359: Durian
360: Okra
361: Lipstick
362: Cosmetics Mirror
363: Curling
364: Table Tennis
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from tqdm import tqdm
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.downloads import download
from ultralytics.utils.ops import xyxy2xywhn
import numpy as np
from pathlib import Path
check_requirements(('pycocotools>=2.0',))
from pycocotools.coco import COCO
# Make Directories
dir = Path(yaml['path']) # dataset root dir
for p in 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
for q in 'train', 'val':
(dir / p / q).mkdir(parents=True, exist_ok=True)
# Train, Val Splits
for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
print(f"Processing {split} in {patches} patches ...")
images, labels = dir / 'images' / split, dir / 'labels' / split
# Download
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
if split == 'train':
download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir) # annotations json
download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, threads=8)
elif split == 'val':
download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir) # annotations json
download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, threads=8)
download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, threads=8)
# Move
for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
f.rename(images / f.name) # move to /images/{split}
# Labels
coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
for cid, cat in enumerate(names):
catIds = coco.getCatIds(catNms=[cat])
imgIds = coco.getImgIds(catIds=catIds)
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
width, height = im["width"], im["height"]
path = Path(im["file_name"]) # image filename
try:
with open(labels / path.with_suffix('.txt').name, 'a') as file:
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
for a in coco.loadAnns(annIds):
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
except Exception as e:
print(e)
Использование
Чтобы обучить модель YOLO11n на наборе данных Objects365 в течение 100 эпох при размере изображения 640, можно использовать следующие фрагменты кода. Полный список доступных аргументов см. на странице обучения модели.
Пример поезда
Образцы данных и аннотации
Набор данных Objects365 содержит разнообразный набор изображений высокого разрешения с объектами из 365 категорий, что обеспечивает богатый контекст для задач обнаружения объектов. Вот несколько примеров изображений из этого набора:
- Объекты365: Это изображение демонстрирует пример обнаружения объектов, где объекты аннотированы с помощью ограничительных рамок. В наборе данных представлен широкий спектр изображений, что облегчает разработку моделей для этой задачи.
Этот пример демонстрирует разнообразие и сложность данных в наборе данных Objects365 и подчеркивает важность точного обнаружения объектов для приложений компьютерного зрения.
Цитаты и благодарности
Если вы используете набор данных Objects365 в своих исследованиях или разработках, пожалуйста, ссылайтесь на следующий документ:
@inproceedings{shao2019objects365,
title={Objects365: A Large-scale, High-quality Dataset for Object Detection},
author={Shao, Shuai and Li, Zeming and Zhang, Tianyuan and Peng, Chao and Yu, Gang and Li, Jing and Zhang, Xiangyu and Sun, Jian},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={8425--8434},
year={2019}
}
Мы хотели бы выразить признательность команде исследователей, которые создали и поддерживают набор данных Objects365 как ценный ресурс для сообщества исследователей компьютерного зрения. Более подробную информацию о наборе данных Objects365 и его создателях можно найти на сайте Objects365 dataset.
ЧАСТО ЗАДАВАЕМЫЕ ВОПРОСЫ
Для чего используется набор данных Objects365?
Набор данных Objects365 предназначен для задач обнаружения объектов в машинном обучении и компьютерном зрении. Он представляет собой крупномасштабный высококачественный набор данных с 2 миллионами аннотированных изображений и 30 миллионами ограничивающих рамок по 365 категориям. Использование такого разнообразного набора данных помогает повысить производительность и обобщенность моделей обнаружения объектов, что делает его бесценным для исследований и разработок в этой области.
Как обучить модель YOLO11 на наборе данных Objects365?
Чтобы обучить модель YOLO11n на наборе данных Objects365 в течение 100 эпох с размером изображения 640, выполните следующие инструкции:
Пример поезда
Полный список доступных аргументов см. на странице "Обучение".
Почему я должен использовать набор данных Objects365 для своих проектов по обнаружению объектов?
Набор данных Objects365 обладает рядом преимуществ для задач обнаружения объектов:
- Разнообразие: Он включает в себя 2 миллиона изображений с объектами в различных сценариях, охватывающих 365 категорий.
- Высококачественные аннотации: Более 30 миллионов ограничительных рамок предоставляют исчерпывающие данные об истинном положении дел.
- Производительность: Модели, предварительно обученные на Objects365, значительно превосходят модели, обученные на таких наборах данных, как ImageNet, что приводит к лучшему обобщению.
Где найти файл конфигурации YAML для набора данных Objects365?
Конфигурационный файл YAML для набора данных Objects365 доступен по адресу Objects365.yaml. Этот файл содержит важную информацию, такую как пути к набору данных и метки классов, что очень важно для настройки среды обучения.
Как структура наборов данных Objects365 улучшает моделирование обнаружения объектов?
Набор данных Objects365 состоит из 2 миллионов изображений высокого разрешения и обширных аннотаций, включающих более 30 миллионов ограничительных рамок. Такая структура обеспечивает надежный набор данных для обучения моделей глубокого обучения в области обнаружения объектов, предлагая широкий спектр объектов и сценариев. Такое разнообразие и объем помогают разрабатывать модели, которые являются более точными и способны хорошо обобщаться на реальные приложения. Более подробную информацию о структуре набора данных см. в разделе Dataset YAML.