ΠΠ°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ Open Images V7
Open Images V7 - ΡΡΠΎ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΡΠΉ ΠΈ ΠΎΠ±ΡΠΈΡΠ½ΡΠΉ Π½Π°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ , ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°Π΅ΡΡΡ ΡΠ°ΠΉΡΠΎΠΌ Google. ΠΠ°ΡΠ΅Π»Π΅Π½Π½Π°Ρ Π½Π° ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π·ΡΠ΅Π½ΠΈΡ, ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΡ Π²Π°ΡΡΠ°ΡΡΡΡ ΠΎΠ±ΡΠΈΡΠ½ΠΎΠΉ ΠΊΠΎΠ»Π»Π΅ΠΊΡΠΈΠ΅ΠΉ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, Π°Π½Π½ΠΎΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ Π΄Π°Π½Π½ΡΡ , Π²ΠΊΠ»ΡΡΠ°Ρ ΠΌΠ΅ΡΠΊΠΈ Π½Π° ΡΡΠΎΠ²Π½Π΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ°ΠΌΠΊΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², ΠΌΠ°ΡΠΊΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², Π²ΠΈΠ·ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΈ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΏΠΎΠ²Π΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ.
Π‘ΠΌΠΎΡΡΠ΅ΡΡ: ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΠ±ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ OpenImagesV7
ΠΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΠ±ΡΡΠ΅Π½Π½ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ Open Images V7
ΠΠΎΠ΄Π΅Π»Ρ | ΡΠ°Π·ΠΌΠ΅Ρ (ΠΏΠΈΠΊΡΠ΅Π»Π΅ΠΉ) |
mAPval 50-95 |
Π‘ΠΊΠΎΡΠΎΡΡΡ CPU ONNX (ΠΌΡ) |
Π‘ΠΊΠΎΡΠΎΡΡΡ A100 TensorRT (ΠΌΡ) |
params (M) |
FLOPs (B) |
---|---|---|---|---|---|---|
YOLOv8n | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
YOLOv8s | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
YOLOv8m | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
YOLOv8l | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
YOLOv8x | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΡΠΈ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΡΠ΅Π½ΠΈΡΠΎΠ²ΠΊΠΈ Π΄Π»Ρ Π²ΡΠ²ΠΎΠ΄ΠΎΠ² ΠΈΠ»ΠΈ ΡΠΎΠ½ΠΊΠΎΠΉ Π½Π°ΡΡΡΠΎΠΉΠΊΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ.
ΠΡΠΈΠΌΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΠ±ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ
- Π‘ΠΎΠ΄Π΅ΡΠΆΠΈΡ ~9 ΠΌΠ»Π½ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, Π°Π½Π½ΠΎΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π·Π°Π΄Π°Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π·ΡΠ΅Π½ΠΈΡ.
- Π‘ΠΎΠ΄Π΅ΡΠΆΠΈΡ 16 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½ΠΎΠ² ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°ΡΡΠΈΡ ΡΠ°ΠΌΠΎΠΊ Π΄Π»Ρ 600 ΠΊΠ»Π°ΡΡΠΎΠ² ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π½Π° 1,9 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Π°Ρ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ. ΠΡΠΈ ΡΠ°ΠΌΠΊΠΈ Π² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ Π½Π°ΡΠΈΡΠΎΠ²Π°Π½Ρ Π²ΡΡΡΠ½ΡΡ ΡΠΊΡΠΏΠ΅ΡΡΠ°ΠΌΠΈ, ΡΡΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ Π²ΡΡΠΎΠΊΡΡ ΡΠΎΡΠ½ΠΎΡΡΡ.
- ΠΠΎΡΡΡΠΏΠ½ΠΎ 3,3 ΠΌΠ»Π½ Π²ΠΈΠ·ΡΠ°Π»ΡΠ½ΡΡ Π°Π½Π½ΠΎΡΠ°ΡΠΈΠΉ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΠΎΠΏΠΈΡΠ°Π½Ρ 1 466 ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΡΡ ΡΡΠΈΠΏΠ»Π΅ΡΠΎΠ² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ, ΡΠ²ΠΎΠΉΡΡΠ² ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Π»ΡΠ΄Π΅ΠΉ.
- Π V5 ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΠΌΠ°ΡΠΊΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ Π΄Π»Ρ 2,8 ΠΌΠ»Π½ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² 350 ΠΊΠ»Π°ΡΡΠΎΠ².
- V6 ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠ» 675 ΡΡΡ. Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΡ ΡΠ°ΡΡΠΊΠ°Π·ΠΎΠ², ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½ΡΡΡΠΈΡ Π³ΠΎΠ»ΠΎΡ, ΡΠ΅ΠΊΡΡ ΠΈ ΡΠ»Π΅Π΄Ρ ΠΌΡΡΠΈ, Π²ΡΠ΄Π΅Π»ΡΡΡΠΈΠ΅ ΠΎΠΏΠΈΡΡΠ²Π°Π΅ΠΌΡΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΡ.
- Π V7 Π±ΡΠ»ΠΎ Π²Π²Π΅Π΄Π΅Π½ΠΎ 66,4 ΠΌΠ»Π½ ΠΌΠ΅ΡΠΎΠΊ Π½Π° ΡΡΠΎΠ²Π½Π΅ ΡΠΎΡΠ΅ΠΊ Π½Π° 1,4 ΠΌΠ»Π½ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, ΠΎΡ Π²Π°ΡΡΠ²Π°ΡΡΠΈΡ 5827 ΠΊΠ»Π°ΡΡΠΎΠ².
- ΠΡ Π²Π°ΡΡΠ²Π°Π΅Ρ 61,4 ΠΌΠ»Π½ ΠΌΠ΅ΡΠΎΠΊ Π½Π° ΡΡΠΎΠ²Π½Π΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π² ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΠΌ Π½Π°Π±ΠΎΡΠ΅ ΠΈΠ· 20 638 ΠΊΠ»Π°ΡΡΠΎΠ².
- ΠΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ Π΅Π΄ΠΈΠ½ΡΡ ΠΏΠ»Π°ΡΡΠΎΡΠΌΡ Π΄Π»Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ, ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈ ΠΌΡΠ»ΡΡΠΈΠΌΠΎΠ΄Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ.
Π‘ΡΡΡΠΊΡΡΡΠ° Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ
Open Images V7 ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ², ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Π½ΡΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π·Π°Π΄Π°Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π·ΡΠ΅Π½ΠΈΡ:
- ΠΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ: ΠΠΊΠΎΠ»ΠΎ 9 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½ΠΎΠ² ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, ΡΠ°ΡΡΠΎ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΡΡΠΈΡ Π·Π°ΠΌΡΡΠ»ΠΎΠ²Π°ΡΡΠ΅ ΡΡΠ΅Π½Ρ ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ 8,3 ΠΎΠ±ΡΠ΅ΠΊΡΠ° Π½Π° ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
- ΠΠ³ΡΠ°Π½ΠΈΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ°ΠΌΠΊΠΈ: ΠΠΎΠ»Π΅Π΅ 16 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½ΠΎΠ² Π±ΠΎΠΊΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ°Π·Π³ΡΠ°Π½ΠΈΡΠΈΠ²Π°ΡΡ ΠΎΠ±ΡΠ΅ΠΊΡΡ Π² 600 ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΡΡ .
- ΠΠ°ΡΠΊΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ: ΠΠ½ΠΈ Π΄Π΅ΡΠ°Π»ΠΈΠ·ΠΈΡΡΡΡ ΡΠΎΡΠ½ΡΠ΅ Π³ΡΠ°Π½ΠΈΡΡ 2,8 ΠΌΠ»Π½ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈΠ· 350 ΠΊΠ»Π°ΡΡΠΎΠ².
- ΠΠΈΠ·ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ: 3.3M Π°Π½Π½ΠΎΡΠ°ΡΠΈΠΈ, ΡΠΊΠ°Π·ΡΠ²Π°ΡΡΠΈΠ΅ Π½Π° Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ, ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ².
- ΠΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΏΠΎΠ²Π΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ: 675k ΠΎΠΏΠΈΡΠ°Π½ΠΈΠΉ, ΡΠΎΡΠ΅ΡΠ°ΡΡΠΈΡ Π³ΠΎΠ»ΠΎΡ, ΡΠ΅ΠΊΡΡ ΠΈ ΡΠ»Π΅Π΄Ρ ΠΌΡΡΠΈ.
- ΠΠ΅ΡΠΊΠΈ Π½Π° ΡΡΠΎΠ²Π½Π΅ ΡΠΎΡΠ΅ΠΊ: 66,4 ΠΌΠ»Π½ ΠΌΠ΅ΡΠΎΠΊ Π½Π° 1,4 ΠΌΠ»Π½ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, ΠΏΡΠΈΠ³ΠΎΠ΄Π½ΡΡ Π΄Π»Ρ ΡΠ΅ΠΌΠ°Π½ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ Ρ Π½ΡΠ»Π΅Π²ΡΠΌ/Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΠΌΠΈ ΡΠ½ΠΈΠΌΠΊΠ°ΠΌΠΈ.
ΠΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡ
Open Images V7 - ΡΡΠΎ ΠΊΡΠ°Π΅ΡΠ³ΠΎΠ»ΡΠ½ΡΠΉ ΠΊΠ°ΠΌΠ΅Π½Ρ Π΄Π»Ρ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π·Π°Π΄Π°ΡΠ°Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π·ΡΠ΅Π½ΠΈΡ. Π¨ΠΈΡΠΎΠΊΠΈΠΉ Π½Π°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ ΠΈ Π²ΡΡΠΎΠΊΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π°Π½Π½ΠΎΡΠ°ΡΠΈΠΈ Π΄Π΅Π»Π°ΡΡ Π΅Π³ΠΎ Π½Π΅Π·Π°ΠΌΠ΅Π½ΠΈΠΌΡΠΌ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΉ ΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΡΠΈΠΊΠΎΠ², ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΡΡΡΠΈΡ ΡΡ Π½Π° ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΌ Π·ΡΠ΅Π½ΠΈΠΈ.
ΠΠ°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ YAML
ΠΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π½Π°Π±ΠΎΡΡ Π΄Π°Π½Π½ΡΡ
ΠΏΠΎΡΡΠ°Π²Π»ΡΡΡΡΡ Ρ ΡΠ°ΠΉΠ»ΠΎΠΌ YAML (Yet Another Markup Language), ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΡ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ
. Π ΡΠ»ΡΡΠ°Π΅ Ρ Open Images V7 Π³ΠΈΠΏΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ OpenImagesV7.yaml
ΠΌΠΎΠ³ΡΡ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°ΡΡ. ΠΠ»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠΎΡΠ½ΡΡ
ΠΏΡΡΠ΅ΠΉ ΠΈ ΠΊΠΎΠ½ΡΠΈΠ³ΡΡΠ°ΡΠΈΠΉ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΎΠ±ΡΠ°ΡΠΈΡΡΡΡ ΠΊ ΠΎΡΠΈΡΠΈΠ°Π»ΡΠ½ΠΎΠΌΡ ΡΠ΅ΠΏΠΎΠ·ΠΈΡΠΎΡΠΈΡ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ
ΠΈΠ»ΠΈ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ.
OpenImagesV7.yaml
# Ultralytics YOLO π, AGPL-3.0 license
# Open Images v7 dataset https://storage.googleapis.com/openimages/web/index.html by Google
# Documentation: https://docs.ultralytics.com/datasets/detect/open-images-v7/
# Example usage: yolo train data=open-images-v7.yaml
# parent
# βββ ultralytics
# βββ datasets
# βββ open-images-v7 β downloads here (561 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/open-images-v7 # dataset root dir
train: images/train # train images (relative to 'path') 1743042 images
val: images/val # val images (relative to 'path') 41620 images
test: # test images (optional)
# Classes
names:
0: Accordion
1: Adhesive tape
2: Aircraft
3: Airplane
4: Alarm clock
5: Alpaca
6: Ambulance
7: Animal
8: Ant
9: Antelope
10: Apple
11: Armadillo
12: Artichoke
13: Auto part
14: Axe
15: Backpack
16: Bagel
17: Baked goods
18: Balance beam
19: Ball
20: Balloon
21: Banana
22: Band-aid
23: Banjo
24: Barge
25: Barrel
26: Baseball bat
27: Baseball glove
28: Bat (Animal)
29: Bathroom accessory
30: Bathroom cabinet
31: Bathtub
32: Beaker
33: Bear
34: Bed
35: Bee
36: Beehive
37: Beer
38: Beetle
39: Bell pepper
40: Belt
41: Bench
42: Bicycle
43: Bicycle helmet
44: Bicycle wheel
45: Bidet
46: Billboard
47: Billiard table
48: Binoculars
49: Bird
50: Blender
51: Blue jay
52: Boat
53: Bomb
54: Book
55: Bookcase
56: Boot
57: Bottle
58: Bottle opener
59: Bow and arrow
60: Bowl
61: Bowling equipment
62: Box
63: Boy
64: Brassiere
65: Bread
66: Briefcase
67: Broccoli
68: Bronze sculpture
69: Brown bear
70: Building
71: Bull
72: Burrito
73: Bus
74: Bust
75: Butterfly
76: Cabbage
77: Cabinetry
78: Cake
79: Cake stand
80: Calculator
81: Camel
82: Camera
83: Can opener
84: Canary
85: Candle
86: Candy
87: Cannon
88: Canoe
89: Cantaloupe
90: Car
91: Carnivore
92: Carrot
93: Cart
94: Cassette deck
95: Castle
96: Cat
97: Cat furniture
98: Caterpillar
99: Cattle
100: Ceiling fan
101: Cello
102: Centipede
103: Chainsaw
104: Chair
105: Cheese
106: Cheetah
107: Chest of drawers
108: Chicken
109: Chime
110: Chisel
111: Chopsticks
112: Christmas tree
113: Clock
114: Closet
115: Clothing
116: Coat
117: Cocktail
118: Cocktail shaker
119: Coconut
120: Coffee
121: Coffee cup
122: Coffee table
123: Coffeemaker
124: Coin
125: Common fig
126: Common sunflower
127: Computer keyboard
128: Computer monitor
129: Computer mouse
130: Container
131: Convenience store
132: Cookie
133: Cooking spray
134: Corded phone
135: Cosmetics
136: Couch
137: Countertop
138: Cowboy hat
139: Crab
140: Cream
141: Cricket ball
142: Crocodile
143: Croissant
144: Crown
145: Crutch
146: Cucumber
147: Cupboard
148: Curtain
149: Cutting board
150: Dagger
151: Dairy Product
152: Deer
153: Desk
154: Dessert
155: Diaper
156: Dice
157: Digital clock
158: Dinosaur
159: Dishwasher
160: Dog
161: Dog bed
162: Doll
163: Dolphin
164: Door
165: Door handle
166: Doughnut
167: Dragonfly
168: Drawer
169: Dress
170: Drill (Tool)
171: Drink
172: Drinking straw
173: Drum
174: Duck
175: Dumbbell
176: Eagle
177: Earrings
178: Egg (Food)
179: Elephant
180: Envelope
181: Eraser
182: Face powder
183: Facial tissue holder
184: Falcon
185: Fashion accessory
186: Fast food
187: Fax
188: Fedora
189: Filing cabinet
190: Fire hydrant
191: Fireplace
192: Fish
193: Flag
194: Flashlight
195: Flower
196: Flowerpot
197: Flute
198: Flying disc
199: Food
200: Food processor
201: Football
202: Football helmet
203: Footwear
204: Fork
205: Fountain
206: Fox
207: French fries
208: French horn
209: Frog
210: Fruit
211: Frying pan
212: Furniture
213: Garden Asparagus
214: Gas stove
215: Giraffe
216: Girl
217: Glasses
218: Glove
219: Goat
220: Goggles
221: Goldfish
222: Golf ball
223: Golf cart
224: Gondola
225: Goose
226: Grape
227: Grapefruit
228: Grinder
229: Guacamole
230: Guitar
231: Hair dryer
232: Hair spray
233: Hamburger
234: Hammer
235: Hamster
236: Hand dryer
237: Handbag
238: Handgun
239: Harbor seal
240: Harmonica
241: Harp
242: Harpsichord
243: Hat
244: Headphones
245: Heater
246: Hedgehog
247: Helicopter
248: Helmet
249: High heels
250: Hiking equipment
251: Hippopotamus
252: Home appliance
253: Honeycomb
254: Horizontal bar
255: Horse
256: Hot dog
257: House
258: Houseplant
259: Human arm
260: Human beard
261: Human body
262: Human ear
263: Human eye
264: Human face
265: Human foot
266: Human hair
267: Human hand
268: Human head
269: Human leg
270: Human mouth
271: Human nose
272: Humidifier
273: Ice cream
274: Indoor rower
275: Infant bed
276: Insect
277: Invertebrate
278: Ipod
279: Isopod
280: Jacket
281: Jacuzzi
282: Jaguar (Animal)
283: Jeans
284: Jellyfish
285: Jet ski
286: Jug
287: Juice
288: Kangaroo
289: Kettle
290: Kitchen & dining room table
291: Kitchen appliance
292: Kitchen knife
293: Kitchen utensil
294: Kitchenware
295: Kite
296: Knife
297: Koala
298: Ladder
299: Ladle
300: Ladybug
301: Lamp
302: Land vehicle
303: Lantern
304: Laptop
305: Lavender (Plant)
306: Lemon
307: Leopard
308: Light bulb
309: Light switch
310: Lighthouse
311: Lily
312: Limousine
313: Lion
314: Lipstick
315: Lizard
316: Lobster
317: Loveseat
318: Luggage and bags
319: Lynx
320: Magpie
321: Mammal
322: Man
323: Mango
324: Maple
325: Maracas
326: Marine invertebrates
327: Marine mammal
328: Measuring cup
329: Mechanical fan
330: Medical equipment
331: Microphone
332: Microwave oven
333: Milk
334: Miniskirt
335: Mirror
336: Missile
337: Mixer
338: Mixing bowl
339: Mobile phone
340: Monkey
341: Moths and butterflies
342: Motorcycle
343: Mouse
344: Muffin
345: Mug
346: Mule
347: Mushroom
348: Musical instrument
349: Musical keyboard
350: Nail (Construction)
351: Necklace
352: Nightstand
353: Oboe
354: Office building
355: Office supplies
356: Orange
357: Organ (Musical Instrument)
358: Ostrich
359: Otter
360: Oven
361: Owl
362: Oyster
363: Paddle
364: Palm tree
365: Pancake
366: Panda
367: Paper cutter
368: Paper towel
369: Parachute
370: Parking meter
371: Parrot
372: Pasta
373: Pastry
374: Peach
375: Pear
376: Pen
377: Pencil case
378: Pencil sharpener
379: Penguin
380: Perfume
381: Person
382: Personal care
383: Personal flotation device
384: Piano
385: Picnic basket
386: Picture frame
387: Pig
388: Pillow
389: Pineapple
390: Pitcher (Container)
391: Pizza
392: Pizza cutter
393: Plant
394: Plastic bag
395: Plate
396: Platter
397: Plumbing fixture
398: Polar bear
399: Pomegranate
400: Popcorn
401: Porch
402: Porcupine
403: Poster
404: Potato
405: Power plugs and sockets
406: Pressure cooker
407: Pretzel
408: Printer
409: Pumpkin
410: Punching bag
411: Rabbit
412: Raccoon
413: Racket
414: Radish
415: Ratchet (Device)
416: Raven
417: Rays and skates
418: Red panda
419: Refrigerator
420: Remote control
421: Reptile
422: Rhinoceros
423: Rifle
424: Ring binder
425: Rocket
426: Roller skates
427: Rose
428: Rugby ball
429: Ruler
430: Salad
431: Salt and pepper shakers
432: Sandal
433: Sandwich
434: Saucer
435: Saxophone
436: Scale
437: Scarf
438: Scissors
439: Scoreboard
440: Scorpion
441: Screwdriver
442: Sculpture
443: Sea lion
444: Sea turtle
445: Seafood
446: Seahorse
447: Seat belt
448: Segway
449: Serving tray
450: Sewing machine
451: Shark
452: Sheep
453: Shelf
454: Shellfish
455: Shirt
456: Shorts
457: Shotgun
458: Shower
459: Shrimp
460: Sink
461: Skateboard
462: Ski
463: Skirt
464: Skull
465: Skunk
466: Skyscraper
467: Slow cooker
468: Snack
469: Snail
470: Snake
471: Snowboard
472: Snowman
473: Snowmobile
474: Snowplow
475: Soap dispenser
476: Sock
477: Sofa bed
478: Sombrero
479: Sparrow
480: Spatula
481: Spice rack
482: Spider
483: Spoon
484: Sports equipment
485: Sports uniform
486: Squash (Plant)
487: Squid
488: Squirrel
489: Stairs
490: Stapler
491: Starfish
492: Stationary bicycle
493: Stethoscope
494: Stool
495: Stop sign
496: Strawberry
497: Street light
498: Stretcher
499: Studio couch
500: Submarine
501: Submarine sandwich
502: Suit
503: Suitcase
504: Sun hat
505: Sunglasses
506: Surfboard
507: Sushi
508: Swan
509: Swim cap
510: Swimming pool
511: Swimwear
512: Sword
513: Syringe
514: Table
515: Table tennis racket
516: Tablet computer
517: Tableware
518: Taco
519: Tank
520: Tap
521: Tart
522: Taxi
523: Tea
524: Teapot
525: Teddy bear
526: Telephone
527: Television
528: Tennis ball
529: Tennis racket
530: Tent
531: Tiara
532: Tick
533: Tie
534: Tiger
535: Tin can
536: Tire
537: Toaster
538: Toilet
539: Toilet paper
540: Tomato
541: Tool
542: Toothbrush
543: Torch
544: Tortoise
545: Towel
546: Tower
547: Toy
548: Traffic light
549: Traffic sign
550: Train
551: Training bench
552: Treadmill
553: Tree
554: Tree house
555: Tripod
556: Trombone
557: Trousers
558: Truck
559: Trumpet
560: Turkey
561: Turtle
562: Umbrella
563: Unicycle
564: Van
565: Vase
566: Vegetable
567: Vehicle
568: Vehicle registration plate
569: Violin
570: Volleyball (Ball)
571: Waffle
572: Waffle iron
573: Wall clock
574: Wardrobe
575: Washing machine
576: Waste container
577: Watch
578: Watercraft
579: Watermelon
580: Weapon
581: Whale
582: Wheel
583: Wheelchair
584: Whisk
585: Whiteboard
586: Willow
587: Window
588: Window blind
589: Wine
590: Wine glass
591: Wine rack
592: Winter melon
593: Wok
594: Woman
595: Wood-burning stove
596: Woodpecker
597: Worm
598: Wrench
599: Zebra
600: Zucchini
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from ultralytics.utils import LOGGER, SETTINGS, Path, is_ubuntu, get_ubuntu_version
from ultralytics.utils.checks import check_requirements, check_version
check_requirements('fiftyone')
if is_ubuntu() and check_version(get_ubuntu_version(), '>=22.04'):
# Ubuntu>=22.04 patch https://github.com/voxel51/fiftyone/issues/2961#issuecomment-1666519347
check_requirements('fiftyone-db-ubuntu2204')
import fiftyone as fo
import fiftyone.zoo as foz
import warnings
name = 'open-images-v7'
fraction = 1.0 # fraction of full dataset to use
LOGGER.warning('WARNING β οΈ Open Images V7 dataset requires at least **561 GB of free space. Starting download...')
for split in 'train', 'validation': # 1743042 train, 41620 val images
train = split == 'train'
# Load Open Images dataset
dataset = foz.load_zoo_dataset(name,
split=split,
label_types=['detections'],
dataset_dir=Path(SETTINGS['datasets_dir']) / 'fiftyone' / name,
max_samples=round((1743042 if train else 41620) * fraction))
# Define classes
if train:
classes = dataset.default_classes # all classes
# classes = dataset.distinct('ground_truth.detections.label') # only observed classes
# Export to YOLO format
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning, module="fiftyone.utils.yolo")
dataset.export(export_dir=str(Path(SETTINGS['datasets_dir']) / name),
dataset_type=fo.types.YOLOv5Dataset,
label_field='ground_truth',
split='val' if split == 'validation' else split,
classes=classes,
overwrite=train)
ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅
ΠΠ»Ρ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΌΠΎΠ΄Π΅Π»ΠΈ YOLO11n Π½Π° Π½Π°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½ΡΡ Open Images V7 Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 100 ΡΠΏΠΎΡ ΠΏΡΠΈ ΡΠ°Π·ΠΌΠ΅ΡΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ 640 ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΡ ΠΊΠΎΠ΄Π°. ΠΠΎΠ»Π½ΡΠΉ ΡΠΏΠΈΡΠΎΠΊ Π΄ΠΎΡΡΡΠΏΠ½ΡΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ² ΡΠΌ. Π½Π° ΡΡΡΠ°Π½ΠΈΡΠ΅ ΠΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ.
ΠΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅
ΠΠΎΠ»Π½ΡΠΉ Π½Π°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ Open Images V7 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ 1 743 042 ΠΎΠ±ΡΡΠ°ΡΡΠΈΡ ΠΈ 41 620 ΠΏΡΠΎΠ²Π΅ΡΠΎΡΠ½ΡΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ ΡΡΠ΅Π±ΡΠ΅Ρ ΠΎΠΊΠΎΠ»ΠΎ 561 ΠΠ Π΄ΠΈΡΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π° ΠΏΡΠΈ Π·Π°Π³ΡΡΠ·ΠΊΠ΅.
ΠΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΡ Π½ΠΈΠΆΠ΅ ΠΊΠΎΠΌΠ°Π½Π΄ ΠΏΡΠΈΠ²Π΅Π΄Π΅Ρ ΠΊ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π·Π°Π³ΡΡΠ·ΠΊΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ , Π΅ΡΠ»ΠΈ ΠΎΠ½ Π΅ΡΠ΅ Π½Π΅ Π΄ΠΎΡΡΡΠΏΠ΅Π½ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎ. ΠΠ΅ΡΠ΅Π΄ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ Π½ΠΈΠΆΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠ° Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ:
- Π£Π±Π΅Π΄ΠΈΡΠ΅ΡΡ, ΡΡΠΎ Π½Π° Π²Π°ΡΠ΅ΠΌ ΡΡΡΡΠΎΠΉΡΡΠ²Π΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΠΌΠ΅ΡΡΠ° Π΄Π»Ρ Ρ ΡΠ°Π½Π΅Π½ΠΈΡ Π΄Π°Π½Π½ΡΡ .
- ΠΠ±Π΅ΡΠΏΠ΅ΡΡΡΠ΅ Π½Π°Π΄Π΅ΠΆΠ½ΠΎΠ΅ ΠΈ ΡΠΊΠΎΡΠΎΡΡΠ½ΠΎΠ΅ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΊ ΠΠ½ΡΠ΅ΡΠ½Π΅ΡΡ.
ΠΡΠΈΠΌΠ΅Ρ ΠΏΠΎΠ΅Π·Π΄Π°
ΠΠ±ΡΠ°Π·ΡΡ Π΄Π°Π½Π½ΡΡ ΠΈ Π°Π½Π½ΠΎΡΠ°ΡΠΈΠΈ
ΠΠ»Π»ΡΡΡΡΠ°ΡΠΈΠΈ ΠΊ Π½Π°Π±ΠΎΡΡ Π΄Π°Π½Π½ΡΡ ΠΏΠΎΠΌΠΎΠ³Π°ΡΡ ΠΏΠΎΠ½ΡΡΡ Π΅Π³ΠΎ Π±ΠΎΠ³Π°ΡΡΡΠ²ΠΎ:
- Open Images V7: ΡΡΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΠ΅Ρ Π³Π»ΡΠ±ΠΈΠ½Ρ ΠΈ Π΄Π΅ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΡ Π΄ΠΎΡΡΡΠΏΠ½ΡΡ Π°Π½Π½ΠΎΡΠ°ΡΠΈΠΉ, Π²ΠΊΠ»ΡΡΠ°Ρ ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ°ΠΌΠΊΠΈ, Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΈ ΠΌΠ°ΡΠΊΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ.
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΠΈ ΠΌΠΎΠ³ΡΡ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π½Π΅ΠΎΡΠ΅Π½ΠΈΠΌΠΎΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ Π·Π°Π΄Π°Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π·ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ΅ΡΠ°Π΅Ρ ΡΡΠΎΡ Π½Π°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ , ΠΎΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π΄ΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ.
Π¦ΠΈΡΠ°ΡΡ ΠΈ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΠ½ΠΎΡΡΠΈ
Π’Π΅ΠΌ, ΠΊΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ Open Images V7 Π² ΡΠ²ΠΎΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅, ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΡΡΠ»Π°ΡΡΡΡ Π½Π° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΡΡΠ°ΡΡΠΈ ΠΈ ΠΎΡΠΌΠ΅ΡΠ°ΡΡ ΠΈΡ Π°Π²ΡΠΎΡΠΎΠ²:
@article{OpenImages,
author = {Alina Kuznetsova and Hassan Rom and Neil Alldrin and Jasper Uijlings and Ivan Krasin and Jordi Pont-Tuset and Shahab Kamali and Stefan Popov and Matteo Malloci and Alexander Kolesnikov and Tom Duerig and Vittorio Ferrari},
title = {The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale},
year = {2020},
journal = {IJCV}
}
ΠΡΡΠ°ΠΆΠ°Π΅ΠΌ ΠΈΡΠΊΡΠ΅Π½Π½ΡΡ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΠ½ΠΎΡΡΡ ΠΊΠΎΠΌΠ°Π½Π΄Π΅ Google AI Π·Π° ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ Open Images V7. ΠΠ»Ρ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎΠ³ΠΎ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠ»Π΅Π½ΠΈΡ Ρ Π½Π°Π±ΠΎΡΠΎΠΌ Π΄Π°Π½Π½ΡΡ ΠΈ Π΅Π³ΠΎ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΡΠΌΠΈ ΠΏΠ΅ΡΠ΅ΠΉΠ΄ΠΈΡΠ΅ Π½Π° ΠΎΡΠΈΡΠΈΠ°Π»ΡΠ½ΡΠΉ ΡΠ°ΠΉΡ Open Images V7.
Π§ΠΠ‘Π’Π ΠΠΠΠΠΠΠΠΠ«Π ΠΠΠΠ ΠΠ‘Π«
Π§ΡΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π½Π°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ Open Images V7?
Open Images V7 - ΡΡΠΎ ΠΎΠ±ΡΠΈΡΠ½ΡΠΉ ΠΈ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΡΠΉ Π½Π°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ , ΡΠΎΠ·Π΄Π°Π½Π½ΡΠΉ Π½Π° ΡΠ°ΠΉΡΠ΅ Google ΠΈ ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Π½ΡΠΉ Π΄Π»Ρ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π·ΡΠ΅Π½ΠΈΡ. ΠΠ½ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΠΌΠ΅ΡΠΊΠΈ Π½Π° ΡΡΠΎΠ²Π½Π΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ°ΠΌΠΊΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², ΠΌΠ°ΡΠΊΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², Π²ΠΈΠ·ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΈ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΏΠΎΠ²Π΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ, ΡΡΠΎ Π΄Π΅Π»Π°Π΅Ρ Π΅Π³ΠΎ ΠΈΠ΄Π΅Π°Π»ΡΠ½ΡΠΌ Π΄Π»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π·Π°Π΄Π°Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π·ΡΠ΅Π½ΠΈΡ, ΡΠ°ΠΊΠΈΡ ΠΊΠ°ΠΊ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΡ ΠΈ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ.
ΠΠ°ΠΊ ΠΎΠ±ΡΡΠΈΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ YOLO11 Π½Π° Π½Π°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½ΡΡ Open Images V7?
Π§ΡΠΎΠ±Ρ ΠΎΠ±ΡΡΠΈΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ YOLO11 Π½Π° Π½Π°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½ΡΡ Open Images V7, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΊΠΎΠΌΠ°Π½Π΄Ρ Python ΠΈ CLI . ΠΠΎΡ ΠΏΡΠΈΠΌΠ΅Ρ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΌΠΎΠ΄Π΅Π»ΠΈ YOLO11n Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 100 ΡΠΏΠΎΡ Ρ ΡΠ°Π·ΠΌΠ΅ΡΠΎΠΌ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ 640:
ΠΡΠΈΠΌΠ΅Ρ ΠΏΠΎΠ΅Π·Π΄Π°
ΠΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΎΠ± Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°Ρ ΠΈ Π½Π°ΡΡΡΠΎΠΉΠΊΠ°Ρ ΡΠΌ. Π½Π° ΡΡΡΠ°Π½ΠΈΡΠ΅ ΠΠ±ΡΡΠ΅Π½ΠΈΠ΅.
ΠΠ°ΠΊΠΎΠ²Ρ ΠΊΠ»ΡΡΠ΅Π²ΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ Open Images V7?
ΠΠ°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ Open Images V7 Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΠΎΠΊΠΎΠ»ΠΎ 9 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½ΠΎΠ² ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ Π°Π½Π½ΠΎΡΠ°ΡΠΈΡΠΌΠΈ:
- ΠΠ³ΡΠ°Π½ΠΈΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ°ΠΌΠΊΠΈ: 16 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½ΠΎΠ² ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°ΡΡΠΈΡ ΡΠ°ΠΌΠΎΠΊ Π΄Π»Ρ 600 ΠΊΠ»Π°ΡΡΠΎΠ² ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ².
- ΠΠ°ΡΠΊΠΈ ΡΠ΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ: ΠΠ°ΡΠΊΠΈ Π΄Π»Ρ 2,8 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Π° ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² 350 ΠΊΠ»Π°ΡΡΠΎΠ².
- ΠΠΈΠ·ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ: 3,3 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Π° Π°Π½Π½ΠΎΡΠ°ΡΠΈΠΉ, ΡΠΊΠ°Π·ΡΠ²Π°ΡΡΠΈΡ Π½Π° Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ, ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ.
- ΠΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΏΠΎΠ²Π΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ: 675 000 ΠΎΠΏΠΈΡΠ°Π½ΠΈΠΉ, ΡΠΎΡΠ΅ΡΠ°ΡΡΠΈΡ Π³ΠΎΠ»ΠΎΡ, ΡΠ΅ΠΊΡΡ ΠΈ ΡΠ»Π΅Π΄Ρ ΠΌΡΡΠΈ.
- ΠΠ΅ΡΠΊΠΈ ΡΡΠΎΠ²Π½Ρ ΡΠΎΡΠΊΠΈ: 66,4 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Π° ΠΌΠ΅ΡΠΎΠΊ Π½Π° 1,4 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Π° ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ.
- ΠΠ΅ΡΠΊΠΈ Π½Π° ΡΡΠΎΠ²Π½Π΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ: 61,4 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Π° ΠΌΠ΅ΡΠΎΠΊ Π² 20 638 ΠΊΠ»Π°ΡΡΠ°Ρ .
ΠΠ°ΠΊΠΈΠ΅ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΠ±ΡΡΠ΅Π½Π½ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄ΠΎΡΡΡΠΏΠ½Ρ Π΄Π»Ρ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ Open Images V7?
Ultralytics ΠΠ° ΡΠ°ΠΉΡΠ΅ YOLOv8 ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΠ±ΡΡΠ΅Π½Π½ΡΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π΄Π»Ρ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ Open Images V7, ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΠΈΠΌΠ΅Π΅Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΡΠ°Π·ΠΌΠ΅ΡΡ ΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ:
ΠΠΎΠ΄Π΅Π»Ρ | ΡΠ°Π·ΠΌΠ΅Ρ (ΠΏΠΈΠΊΡΠ΅Π»Π΅ΠΉ) |
mAPval 50-95 |
Π‘ΠΊΠΎΡΠΎΡΡΡ CPU ONNX (ΠΌΡ) |
Π‘ΠΊΠΎΡΠΎΡΡΡ A100 TensorRT (ΠΌΡ) |
params (M) |
FLOPs (B) |
---|---|---|---|---|---|---|
YOLOv8n | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
YOLOv8s | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
YOLOv8m | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
YOLOv8l | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
YOLOv8x | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
ΠΠ»Ρ ΠΊΠ°ΠΊΠΈΡ ΡΠ΅Π»Π΅ΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π½Π°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ Open Images V7?
ΠΠ°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ Open Images V7 ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°Π΅Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π·Π°Π΄Π°ΡΠΈ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π·ΡΠ΅Π½ΠΈΡ, Π²ΠΊΠ»ΡΡΠ°Ρ:
- ΠΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ
- ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ²
- Π‘Π΅Π³ΠΌΠ΅Π½ΡΠ°ΡΠΈΡ ΡΠΊΠ·Π΅ΠΌΠΏΠ»ΡΡΠΎΠ²
- ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅ Π²ΠΈΠ·ΡΠ°Π»ΡΠ½ΡΡ ΡΠ²ΡΠ·Π΅ΠΉ
- ΠΡΠ»ΡΡΠΈΠΌΠΎΠ΄Π°Π»ΡΠ½ΡΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ
ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΠΎΠ±ΡΠΈΡΠ½ΡΠΌ Π°Π½Π½ΠΎΡΠ°ΡΠΈΡΠΌ ΠΈ ΡΠΈΡΠΎΠΊΠΎΠΌΡ ΠΎΡ Π²Π°ΡΡ ΠΎΠ½ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π΄Π»Ρ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΏΡΠΎΠ΄Π²ΠΈΠ½ΡΡΡΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ, ΡΡΠΎ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°Π΅ΡΡΡ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΏΡΠΈΠΌΠ΅ΡΠ°ΠΌΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ, ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΠΎΠΏΠΈΡΠ°Π½Π½ΡΠΌΠΈ Π² ΡΠ°Π·Π΄Π΅Π»Π΅ "ΠΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡ".