Security Alarm System Project Using Ultralytics YOLO11
The Security Alarm System Project utilizing Ultralytics YOLO11 integrates advanced computer vision capabilities to enhance security measures. YOLO11, developed by Ultralytics, provides real-time object detection, allowing the system to identify and respond to potential security threats promptly. This project offers several advantages:
- Real-time Detection: YOLO11's efficiency enables the Security Alarm System to detect and respond to security incidents in real-time, minimizing response time.
- Accuracy: YOLO11 is known for its accuracy in object detection, reducing false positives and enhancing the reliability of the security alarm system.
- ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΈΠ½ΡΠ΅Π³ΡΠ°ΡΠΈΠΈ: ΠΡΠΎΠ΅ΠΊΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π»Π΅Π³ΠΊΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠΈΡΠΎΠ²Π°Π½ Π² ΡΡΡΠ΅ΡΡΠ²ΡΡΡΡΡ ΠΈΠ½ΡΡΠ°ΡΡΡΡΠΊΡΡΡΡ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Ρ ΠΌΠΎΠ΄Π΅ΡΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΡΡΠΎΠ²Π΅Π½Ρ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ.
Π‘ΠΌΠΎΡΡΠΈ: Security Alarm System Project with Ultralytics YOLO11 ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ²
ΠΠΎΠ΄
ΠΠ°ΡΡΡΠΎΠΉΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΡΠΎΠΎΠ±ΡΠ΅Π½ΠΈΡ
ΠΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅
ΠΠ΅Π½Π΅ΡΠ°ΡΠΈΡ ΠΏΠ°ΡΠΎΠ»Π΅ΠΉ Π΄Π»Ρ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠ°
- ΠΠ΅ΡΠ΅ΠΉΠ΄ΠΈ Π² ΡΠ°Π·Π΄Π΅Π» App Password Generator, ΡΠΊΠ°ΠΆΠΈ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ "security project", ΠΈ ΠΏΠΎΠ»ΡΡΠΈ 16-Π·Π½Π°ΡΠ½ΡΠΉ ΠΏΠ°ΡΠΎΠ»Ρ. Π‘ΠΊΠΎΠΏΠΈΡΡΠΉ ΡΡΠΎΡ ΠΏΠ°ΡΠΎΠ»Ρ ΠΈ Π²ΡΡΠ°Π²Ρ Π΅Π³ΠΎ Π² ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ Π΄Π»Ρ Π²Π²ΠΎΠ΄Π° ΠΏΠ°ΡΠΎΠ»Ρ, ΠΊΠ°ΠΊ ΡΠΊΠ°Π·Π°Π½ΠΎ Π² ΠΈΠ½ΡΡΡΡΠΊΡΠΈΠΈ.
password = ""
from_email = "" # must match the email used to generate the password
to_email = "" # receiver email
Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠ²Π΅ΡΠ° ΠΈ Π°ΡΡΠ΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ
import smtplib
server = smtplib.SMTP("smtp.gmail.com: 587")
server.starttls()
server.login(from_email, password)
Π€ΡΠ½ΠΊΡΠΈΡ ΠΎΡΠΏΡΠ°Π²ΠΊΠΈ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΡΡΡ
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
def send_email(to_email, from_email, object_detected=1):
"""Sends an email notification indicating the number of objects detected; defaults to 1 object."""
message = MIMEMultipart()
message["From"] = from_email
message["To"] = to_email
message["Subject"] = "Security Alert"
# Add in the message body
message_body = f"ALERT - {object_detected} objects has been detected!!"
message.attach(MIMEText(message_body, "plain"))
server.sendmail(from_email, to_email, message.as_string())
ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈ ΠΎΡΠΏΡΠ°Π²ΠΊΠ° ΠΎΠΏΠΎΠ²Π΅ΡΠ΅Π½ΠΈΠΉ
from time import time
import cv2
import torch
from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors
class ObjectDetection:
def __init__(self, capture_index):
"""Initializes an ObjectDetection instance with a given camera index."""
self.capture_index = capture_index
self.email_sent = False
# model information
self.model = YOLO("yolo11n.pt")
# visual information
self.annotator = None
self.start_time = 0
self.end_time = 0
# device information
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def predict(self, im0):
"""Run prediction using a YOLO model for the input image `im0`."""
results = self.model(im0)
return results
def display_fps(self, im0):
"""Displays the FPS on an image `im0` by calculating and overlaying as white text on a black rectangle."""
self.end_time = time()
fps = 1 / round(self.end_time - self.start_time, 2)
text = f"FPS: {int(fps)}"
text_size = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 1.0, 2)[0]
gap = 10
cv2.rectangle(
im0,
(20 - gap, 70 - text_size[1] - gap),
(20 + text_size[0] + gap, 70 + gap),
(255, 255, 255),
-1,
)
cv2.putText(im0, text, (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 2)
def plot_bboxes(self, results, im0):
"""Plots bounding boxes on an image given detection results; returns annotated image and class IDs."""
class_ids = []
self.annotator = Annotator(im0, 3, results[0].names)
boxes = results[0].boxes.xyxy.cpu()
clss = results[0].boxes.cls.cpu().tolist()
names = results[0].names
for box, cls in zip(boxes, clss):
class_ids.append(cls)
self.annotator.box_label(box, label=names[int(cls)], color=colors(int(cls), True))
return im0, class_ids
def __call__(self):
"""Run object detection on video frames from a camera stream, plotting and showing the results."""
cap = cv2.VideoCapture(self.capture_index)
assert cap.isOpened()
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
frame_count = 0
while True:
self.start_time = time()
ret, im0 = cap.read()
assert ret
results = self.predict(im0)
im0, class_ids = self.plot_bboxes(results, im0)
if len(class_ids) > 0: # Only send email If not sent before
if not self.email_sent:
send_email(to_email, from_email, len(class_ids))
self.email_sent = True
else:
self.email_sent = False
self.display_fps(im0)
cv2.imshow("YOLO11 Detection", im0)
frame_count += 1
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()
cv2.destroyAllWindows()
server.quit()
ΠΡΠ·ΠΎΠ²ΠΈ ΠΊΠ»Π°ΡΡ "ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ²" ΠΈ Π²ΡΠΏΠΎΠ»Π½ΠΈ ΡΠΌΠΎΠ·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅
ΠΠΎΡ ΠΈ Π²ΡΠ΅! ΠΠΎΠ³Π΄Π° ΡΡ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΊΠΎΠ΄, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΎΠ΄Π½ΠΎ ΡΠ²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠ΅ Π½Π° ΡΠ²ΠΎΠΉ email, Π΅ΡΠ»ΠΈ Π±ΡΠ΄Π΅Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ ΠΎΠ±ΡΠ΅ΠΊΡ. Π£Π²Π΅Π΄ΠΎΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΎΡΠΏΡΠ°Π²Π»ΡΠ΅ΡΡΡ ΡΡΠ°Π·Ρ, Π° Π½Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡΠ°ΡΠ½ΠΎ. ΠΠ΄Π½Π°ΠΊΠΎ Π½Π΅ ΡΡΠ΅ΡΠ½ΡΠΉΡΡ Π½Π°ΡΡΡΠ°ΠΈΠ²Π°ΡΡ ΠΊΠΎΠ΄ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ ΡΠ²ΠΎΠ΅Π³ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠ°.
ΠΠ±ΡΠ°Π·Π΅Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΈΡΡΠΌΠ°
ΠΠΠΠ ΠΠ‘Π« Π ΠΠ’ΠΠΠ’Π«
How does Ultralytics YOLO11 improve the accuracy of a security alarm system?
Ultralytics YOLO11 enhances security alarm systems by delivering high-accuracy, real-time object detection. Its advanced algorithms significantly reduce false positives, ensuring that the system only responds to genuine threats. This increased reliability can be seamlessly integrated with existing security infrastructure, upgrading the overall surveillance quality.
Can I integrate Ultralytics YOLO11 with my existing security infrastructure?
Yes, Ultralytics YOLO11 can be seamlessly integrated with your existing security infrastructure. The system supports various modes and provides flexibility for customization, allowing you to enhance your existing setup with advanced object detection capabilities. For detailed instructions on integrating YOLO11 in your projects, visit the integration section.
What are the storage requirements for running Ultralytics YOLO11?
Running Ultralytics YOLO11 on a standard setup typically requires around 5GB of free disk space. This includes space for storing the YOLO11 model and any additional dependencies. For cloud-based solutions, Ultralytics HUB offers efficient project management and dataset handling, which can optimize storage needs. Learn more about the Pro Plan for enhanced features including extended storage.
What makes Ultralytics YOLO11 different from other object detection models like Faster R-CNN or SSD?
Ultralytics YOLO11 provides an edge over models like Faster R-CNN or SSD with its real-time detection capabilities and higher accuracy. Its unique architecture allows it to process images much faster without compromising on precision, making it ideal for time-sensitive applications like security alarm systems. For a comprehensive comparison of object detection models, you can explore our guide.
How can I reduce the frequency of false positives in my security system using Ultralytics YOLO11?
To reduce false positives, ensure your Ultralytics YOLO11 model is adequately trained with a diverse and well-annotated dataset. Fine-tuning hyperparameters and regularly updating the model with new data can significantly improve detection accuracy. Detailed hyperparameter tuning techniques can be found in our hyperparameter tuning guide.