Bỏ để qua phần nội dung

Hướng dẫn cắt tỉa / thưa thớt

📚 Hướng dẫn này giải thích cách áp dụng cắt tỉa cho YOLOv5 🚀 Mô hình.

Trước khi bắt đầu

Sao chép repo và cài đặt requirements.txt trong một PythonMôi trường >=3.8.0 , bao gồm PyTorch>=1,8. Mô hìnhbộ dữ liệu tải xuống tự động từ phiên bản mới nhất YOLOv5 phát hành.

git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install

Kiểm tra bình thường

Trước khi cắt tỉa, chúng tôi muốn thiết lập hiệu suất cơ bản để so sánh. Lệnh này kiểm tra YOLOv5x trên COCO val2017 ở kích thước hình ảnh 640 pixel. yolov5x.pt là mô hình lớn nhất và chính xác nhất hiện có. Các tùy chọn khác là: yolov5s.pt, yolov5m.ptyolov5l.pthoặc bạn sở hữu Checkpoint từ việc đào tạo tập dữ liệu tùy chỉnh ./weights/best.pt. Để biết chi tiết về tất cả các mô hình có sẵn, vui lòng xem README của chúng tôi bàn.

python val.py --weights yolov5x.pt --data coco.yaml --img 640 --half

Ra:

val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)

Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [01:12<00:00,  2.16it/s]
                 all       5000      36335      0.732      0.628      0.683      0.496
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640)  # <--- base speed

Evaluating pycocotools mAP... saving runs/val/exp2/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.507  # <--- base mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.689
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.552
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.559
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.652
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.381
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.630
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.682
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.731
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.829
Results saved to runs/val/exp

Kiểm tra YOLOv5x trên COCO (0,30 sparsity)

Chúng tôi lặp lại thử nghiệm trên với một mô hình cắt tỉa bằng cách sử dụng torch_utils.prune() lệnh. Chúng tôi cập nhật val.py để cắt tỉa YOLOv5x đến 0,3 thưa thớt:

Ảnh chụp màn hình 2022-02-02 tại 22 54 18

30% sản lượng cắt tỉa:

val: data=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, workers=8, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True, dnn=False
YOLOv5 🚀 v6.0-224-g4c40933 torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)

Fusing layers...
Model Summary: 444 layers, 86705005 parameters, 0 gradients
Pruning model...  0.3 global sparsity
val: Scanning '/content/datasets/coco/val2017.cache' images and labels... 4952 found, 48 missing, 0 empty, 0 corrupt: 100% 5000/5000 [00:00<?, ?it/s]
               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [01:11<00:00,  2.19it/s]
                 all       5000      36335      0.724      0.614      0.671      0.478
Speed: 0.1ms pre-process, 5.2ms inference, 1.7ms NMS per image at shape (32, 3, 640, 640)  # <--- prune mAP

Evaluating pycocotools mAP... saving runs/val/exp3/yolov5x_predictions.json...
...
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.489  # <--- prune mAP
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.677
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.537
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.334
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.542
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.635
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.370
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.612
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.664
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.496
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.722
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.803
Results saved to runs/val/exp3

Trong kết quả, chúng ta có thể quan sát thấy rằng chúng ta đã đạt được một thưa thớt 30% trong mô hình của chúng tôi sau khi cắt tỉa, có nghĩa là 30% thông số trọng lượng của mô hình trong nn.Conv2d Các lớp bằng 0. Thời gian suy luận về cơ bản không thay đổi, trong khi mô hình Điểm AP và AR giảm nhẹ.

Môi trường được hỗ trợ

Ultralytics cung cấp một loạt các môi trường sẵn sàng sử dụng, mỗi môi trường được cài đặt sẵn các phụ thuộc thiết yếu như CUDA, CUDNN,PythonPyTorch, để khởi động các dự án của bạn.

Tình trạng dự án

YOLOv5 CI

Huy hiệu này cho biết rằng tất cả YOLOv5 Các bài kiểm tra Tích hợp liên tục (CI) GitHub Actions đã vượt qua thành công. Các bài kiểm tra CI này kiểm tra nghiêm ngặt chức năng và hiệu suất của YOLOv5 trên các khía cạnh chính khác nhau: đào tạo, xác nhận, suy luận, xuất khẩuđiểm chuẩn. Chúng đảm bảo hoạt động nhất quán và đáng tin cậy trên macOS, Windows và Ubuntu, với các thử nghiệm được tiến hành 24 giờ một lần và theo mỗi cam kết mới.



Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (3)

Ý kiến