Skip to content

Reference for ultralytics/models/sam/modules/decoders.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/models/sam/modules/decoders.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.models.sam.modules.decoders.MaskDecoder

MaskDecoder(*, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int = 3, activation: Type[nn.Module] = nn.GELU, iou_head_depth: int = 3, iou_head_hidden_dim: int = 256)

Bases: Module

Decoder module for generating masks and their associated quality scores, using a transformer architecture to predict masks given image and prompt embeddings.

Attributes:

Name Type Description
transformer_dim int

Channel dimension for the transformer module.

transformer Module

The transformer module used for mask prediction.

num_multimask_outputs int

Number of masks to predict for disambiguating masks.

iou_token Embedding

Embedding for the IoU token.

num_mask_tokens int

Number of mask tokens.

mask_tokens Embedding

Embedding for the mask tokens.

output_upscaling Sequential

Neural network sequence for upscaling the output.

output_hypernetworks_mlps ModuleList

Hypernetwork MLPs for generating masks.

iou_prediction_head Module

MLP for predicting mask quality.

Parameters:

Name Type Description Default
transformer_dim int

the channel dimension of the transformer module

required
transformer Module

the transformer used to predict masks

required
num_multimask_outputs int

the number of masks to predict when disambiguating masks

3
activation Module

the type of activation to use when upscaling masks

GELU
iou_head_depth int

the depth of the MLP used to predict mask quality

3
iou_head_hidden_dim int

the hidden dimension of the MLP used to predict mask quality

256
Source code in ultralytics/models/sam/modules/decoders.py
def __init__(
    self,
    *,
    transformer_dim: int,
    transformer: nn.Module,
    num_multimask_outputs: int = 3,
    activation: Type[nn.Module] = nn.GELU,
    iou_head_depth: int = 3,
    iou_head_hidden_dim: int = 256,
) -> None:
    """
    Predicts masks given an image and prompt embeddings, using a transformer architecture.

    Args:
        transformer_dim (int): the channel dimension of the transformer module
        transformer (nn.Module): the transformer used to predict masks
        num_multimask_outputs (int): the number of masks to predict when disambiguating masks
        activation (nn.Module): the type of activation to use when upscaling masks
        iou_head_depth (int): the depth of the MLP used to predict mask quality
        iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality
    """
    super().__init__()
    self.transformer_dim = transformer_dim
    self.transformer = transformer

    self.num_multimask_outputs = num_multimask_outputs

    self.iou_token = nn.Embedding(1, transformer_dim)
    self.num_mask_tokens = num_multimask_outputs + 1
    self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)

    self.output_upscaling = nn.Sequential(
        nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
        LayerNorm2d(transformer_dim // 4),
        activation(),
        nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
        activation(),
    )
    self.output_hypernetworks_mlps = nn.ModuleList(
        [MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
    )

    self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)

forward

forward(image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool) -> Tuple[torch.Tensor, torch.Tensor]

Predict masks given image and prompt embeddings.

Parameters:

Name Type Description Default
image_embeddings Tensor

the embeddings from the image encoder

required
image_pe Tensor

positional encoding with the shape of image_embeddings

required
sparse_prompt_embeddings Tensor

the embeddings of the points and boxes

required
dense_prompt_embeddings Tensor

the embeddings of the mask inputs

required
multimask_output bool

Whether to return multiple masks or a single mask.

required

Returns:

Type Description
Tensor

torch.Tensor: batched predicted masks

Tensor

torch.Tensor: batched predictions of mask quality

Source code in ultralytics/models/sam/modules/decoders.py
def forward(
    self,
    image_embeddings: torch.Tensor,
    image_pe: torch.Tensor,
    sparse_prompt_embeddings: torch.Tensor,
    dense_prompt_embeddings: torch.Tensor,
    multimask_output: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Predict masks given image and prompt embeddings.

    Args:
        image_embeddings (torch.Tensor): the embeddings from the image encoder
        image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
        sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
        dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
        multimask_output (bool): Whether to return multiple masks or a single mask.

    Returns:
        torch.Tensor: batched predicted masks
        torch.Tensor: batched predictions of mask quality
    """
    masks, iou_pred = self.predict_masks(
        image_embeddings=image_embeddings,
        image_pe=image_pe,
        sparse_prompt_embeddings=sparse_prompt_embeddings,
        dense_prompt_embeddings=dense_prompt_embeddings,
    )

    # Select the correct mask or masks for output
    mask_slice = slice(1, None) if multimask_output else slice(0, 1)
    masks = masks[:, mask_slice, :, :]
    iou_pred = iou_pred[:, mask_slice]

    # Prepare output
    return masks, iou_pred

predict_masks

predict_masks(image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]

Predicts masks.

See 'forward' for more details.

Source code in ultralytics/models/sam/modules/decoders.py
def predict_masks(
    self,
    image_embeddings: torch.Tensor,
    image_pe: torch.Tensor,
    sparse_prompt_embeddings: torch.Tensor,
    dense_prompt_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Predicts masks.

    See 'forward' for more details.
    """
    # Concatenate output tokens
    output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
    output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1)
    tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)

    # Expand per-image data in batch direction to be per-mask
    src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
    src = src + dense_prompt_embeddings
    pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
    b, c, h, w = src.shape

    # Run the transformer
    hs, src = self.transformer(src, pos_src, tokens)
    iou_token_out = hs[:, 0, :]
    mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]

    # Upscale mask embeddings and predict masks using the mask tokens
    src = src.transpose(1, 2).view(b, c, h, w)
    upscaled_embedding = self.output_upscaling(src)
    hyper_in_list: List[torch.Tensor] = [
        self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)
    ]
    hyper_in = torch.stack(hyper_in_list, dim=1)
    b, c, h, w = upscaled_embedding.shape
    masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)

    # Generate mask quality predictions
    iou_pred = self.iou_prediction_head(iou_token_out)

    return masks, iou_pred





ultralytics.models.sam.modules.decoders.MLP

MLP(input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False)

Bases: Module

MLP (Multi-Layer Perceptron) model lightly adapted from https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py

Parameters:

Name Type Description Default
input_dim int

The dimensionality of the input features.

required
hidden_dim int

The dimensionality of the hidden layers.

required
output_dim int

The dimensionality of the output layer.

required
num_layers int

The number of hidden layers.

required
sigmoid_output bool

Apply a sigmoid activation to the output layer. Defaults to False.

False
Source code in ultralytics/models/sam/modules/decoders.py
def __init__(
    self,
    input_dim: int,
    hidden_dim: int,
    output_dim: int,
    num_layers: int,
    sigmoid_output: bool = False,
) -> None:
    """
    Initializes the MLP (Multi-Layer Perceptron) model.

    Args:
        input_dim (int): The dimensionality of the input features.
        hidden_dim (int): The dimensionality of the hidden layers.
        output_dim (int): The dimensionality of the output layer.
        num_layers (int): The number of hidden layers.
        sigmoid_output (bool, optional): Apply a sigmoid activation to the output layer. Defaults to False.
    """
    super().__init__()
    self.num_layers = num_layers
    h = [hidden_dim] * (num_layers - 1)
    self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
    self.sigmoid_output = sigmoid_output

forward

forward(x)

Executes feedforward within the neural network module and applies activation.

Source code in ultralytics/models/sam/modules/decoders.py
def forward(self, x):
    """Executes feedforward within the neural network module and applies activation."""
    for i, layer in enumerate(self.layers):
        x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
    if self.sigmoid_output:
        x = torch.sigmoid(x)
    return x





Created 2023-11-12, Updated 2024-07-21
Authors: glenn-jocher (6), Burhan-Q (1), Laughing-q (1)