انتقل إلى المحتوى

مرجع ل ultralytics/nn/modules/conv.py

ملاحظه

هذا الملف متاح في https://github.com/ultralytics/ultralytics/ نقطة / الرئيسية /ultralytics/ nn / وحدات / conv.py. إذا اكتشفت مشكلة ، فيرجى المساعدة في إصلاحها من خلال المساهمة في طلب 🛠️ سحب. شكرا لك 🙏!



ultralytics.nn.modules.conv.Conv

قواعد: Module

الالتفاف القياسي مع args (ch_in ، ch_out ، kernel ، step ، الحشو ، المجموعات ، التمدد ، التنشيط).

شفرة المصدر في ultralytics/nn/modules/conv.py
36 37 38 39 40 41 42 43 44 45 46474849 50515253 54
class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""

    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

__init__(c1, c2, k=1, s=1, p=None, g=1, d=1, act=True)

تهيئة طبقة Conv مع وسيطات معينة بما في ذلك التنشيط.

شفرة المصدر في ultralytics/nn/modules/conv.py
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
    """Initialize Conv layer with given arguments including activation."""
    super().__init__()
    self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
    self.bn = nn.BatchNorm2d(c2)
    self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

forward(x)

تطبيق الالتفاف وتطبيع الدفعات والتنشيط على الإدخال tensor.

شفرة المصدر في ultralytics/nn/modules/conv.py
def forward(self, x):
    """Apply convolution, batch normalization and activation to input tensor."""
    return self.act(self.bn(self.conv(x)))

forward_fuse(x)

أداء الالتفاف المنقولة من البيانات 2D.

شفرة المصدر في ultralytics/nn/modules/conv.py
def forward_fuse(self, x):
    """Perform transposed convolution of 2D data."""
    return self.act(self.conv(x))



ultralytics.nn.modules.conv.Conv2

قواعد: Conv

وحدة RepConv مبسطة مع صهر Conv.

شفرة المصدر في ultralytics/nn/modules/conv.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71727374757677 787980
class Conv2(Conv):
    """Simplified RepConv module with Conv fusing."""

    def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__(c1, c2, k, s, p, g=g, d=d, act=act)
        self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False)  # add 1x1 conv

    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x) + self.cv2(x)))

    def forward_fuse(self, x):
        """Apply fused convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def fuse_convs(self):
        """Fuse parallel convolutions."""
        w = torch.zeros_like(self.conv.weight.data)
        i = [x // 2 for x in w.shape[2:]]
        w[:, :, i[0] : i[0] + 1, i[1] : i[1] + 1] = self.cv2.weight.data.clone()
        self.conv.weight.data += w
        self.__delattr__("cv2")
        self.forward = self.forward_fuse

__init__(c1, c2, k=3, s=1, p=None, g=1, d=1, act=True)

تهيئة طبقة Conv مع وسيطات معينة بما في ذلك التنشيط.

شفرة المصدر في ultralytics/nn/modules/conv.py
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True):
    """Initialize Conv layer with given arguments including activation."""
    super().__init__(c1, c2, k, s, p, g=g, d=d, act=act)
    self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False)  # add 1x1 conv

forward(x)

تطبيق الالتفاف وتطبيع الدفعات والتنشيط على الإدخال tensor.

شفرة المصدر في ultralytics/nn/modules/conv.py
def forward(self, x):
    """Apply convolution, batch normalization and activation to input tensor."""
    return self.act(self.bn(self.conv(x) + self.cv2(x)))

forward_fuse(x)

تطبيق الالتفاف المنصهر وتطبيع الدفعات والتنشيط على الإدخال tensor.

شفرة المصدر في ultralytics/nn/modules/conv.py
def forward_fuse(self, x):
    """Apply fused convolution, batch normalization and activation to input tensor."""
    return self.act(self.bn(self.conv(x)))

fuse_convs()

دمج التلافيف المتوازية.

شفرة المصدر في ultralytics/nn/modules/conv.py
def fuse_convs(self):
    """Fuse parallel convolutions."""
    w = torch.zeros_like(self.conv.weight.data)
    i = [x // 2 for x in w.shape[2:]]
    w[:, :, i[0] : i[0] + 1, i[1] : i[1] + 1] = self.cv2.weight.data.clone()
    self.conv.weight.data += w
    self.__delattr__("cv2")
    self.forward = self.forward_fuse



ultralytics.nn.modules.conv.LightConv

قواعد: Module

التفاف الضوء مع args (ch_in ، ch_out ، النواة).

https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py

شفرة المصدر في ultralytics/nn/modules/conv.py
83 84 85 86 87 88 89 90 91 92 9394959697 98
class LightConv(nn.Module):
    """
    Light convolution with args(ch_in, ch_out, kernel).

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, c2, k=1, act=nn.ReLU()):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv1 = Conv(c1, c2, 1, act=False)
        self.conv2 = DWConv(c2, c2, k, act=act)

    def forward(self, x):
        """Apply 2 convolutions to input tensor."""
        return self.conv2(self.conv1(x))

__init__(c1, c2, k=1, act=nn.ReLU())

تهيئة طبقة Conv مع وسيطات معينة بما في ذلك التنشيط.

شفرة المصدر في ultralytics/nn/modules/conv.py
def __init__(self, c1, c2, k=1, act=nn.ReLU()):
    """Initialize Conv layer with given arguments including activation."""
    super().__init__()
    self.conv1 = Conv(c1, c2, 1, act=False)
    self.conv2 = DWConv(c2, c2, k, act=act)

forward(x)

تطبيق 2 تلافيف على الإدخال tensor.

شفرة المصدر في ultralytics/nn/modules/conv.py
def forward(self, x):
    """Apply 2 convolutions to input tensor."""
    return self.conv2(self.conv1(x))



ultralytics.nn.modules.conv.DWConv

قواعد: Conv

الالتفاف العميق.

شفرة المصدر في ultralytics/nn/modules/conv.py
101 102 103 104 105 106
class DWConv(Conv):
    """Depth-wise convolution."""

    def __init__(self, c1, c2, k=1, s=1, d=1, act=True):  # ch_in, ch_out, kernel, stride, dilation, activation
        """Initialize Depth-wise convolution with given parameters."""
        super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)

__init__(c1, c2, k=1, s=1, d=1, act=True)

تهيئة الالتفاف الحكيم للعمق باستخدام معلمات معينة.

شفرة المصدر في ultralytics/nn/modules/conv.py
def __init__(self, c1, c2, k=1, s=1, d=1, act=True):  # ch_in, ch_out, kernel, stride, dilation, activation
    """Initialize Depth-wise convolution with given parameters."""
    super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)



ultralytics.nn.modules.conv.DWConvTranspose2d

قواعد: ConvTranspose2d

الالتفاف تبديل العمق.

شفرة المصدر في ultralytics/nn/modules/conv.py
109 110 111 112 113 114
class DWConvTranspose2d(nn.ConvTranspose2d):
    """Depth-wise transpose convolution."""

    def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):  # ch_in, ch_out, kernel, stride, padding, padding_out
        """Initialize DWConvTranspose2d class with given parameters."""
        super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))

__init__(c1, c2, k=1, s=1, p1=0, p2=0)

تهيئة فئة DWConvTranspose2d مع معلمات معينة.

شفرة المصدر في ultralytics/nn/modules/conv.py
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0):  # ch_in, ch_out, kernel, stride, padding, padding_out
    """Initialize DWConvTranspose2d class with given parameters."""
    super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))



ultralytics.nn.modules.conv.ConvTranspose

قواعد: Module

الالتفاف تبديل طبقة 2D.

شفرة المصدر في ultralytics/nn/modules/conv.py
117 118 119 120 121 122 123 124 125 126 127 128129 130131 132 133 134 135
class ConvTranspose(nn.Module):
    """Convolution transpose 2d layer."""

    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
        """Initialize ConvTranspose2d layer with batch normalization and activation function."""
        super().__init__()
        self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
        self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        """Applies transposed convolutions, batch normalization and activation to input."""
        return self.act(self.bn(self.conv_transpose(x)))

    def forward_fuse(self, x):
        """Applies activation and convolution transpose operation to input."""
        return self.act(self.conv_transpose(x))

__init__(c1, c2, k=2, s=2, p=0, bn=True, act=True)

تهيئة طبقة ConvTranspose2d مع وظيفة تطبيع الدفعات والتنشيط.

شفرة المصدر في ultralytics/nn/modules/conv.py
122 123 124 125 126 127
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
    """Initialize ConvTranspose2d layer with batch normalization and activation function."""
    super().__init__()
    self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
    self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
    self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

forward(x)

يطبق التلافيف المنقولة وتطبيع الدفعات والتنشيط على المدخلات.

شفرة المصدر في ultralytics/nn/modules/conv.py
def forward(self, x):
    """Applies transposed convolutions, batch normalization and activation to input."""
    return self.act(self.bn(self.conv_transpose(x)))

forward_fuse(x)

يطبق عملية تبديل التنشيط والالتفاف على الإدخال.

شفرة المصدر في ultralytics/nn/modules/conv.py
def forward_fuse(self, x):
    """Applies activation and convolution transpose operation to input."""
    return self.act(self.conv_transpose(x))



ultralytics.nn.modules.conv.Focus

قواعد: Module

ركز على المعلومات في مساحة c.

شفرة المصدر في ultralytics/nn/modules/conv.py
138 139 140 141 142 143 144 145146 147 148 149150151152153
class Focus(nn.Module):
    """Focus wh information into c-space."""

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
        """Initializes Focus object with user defined channel, convolution, padding, group and activation values."""
        super().__init__()
        self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
        # self.contract = Contract(gain=2)

    def forward(self, x):
        """
        Applies convolution to concatenated tensor and returns the output.

        Input shape is (b,c,w,h) and output shape is (b,4c,w/2,h/2).
        """
        return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))

__init__(c1, c2, k=1, s=1, p=None, g=1, act=True)

تهيئة كائن التركيز باستخدام قيم القناة المعرفة من قبل المستخدم والالتفاف والحشو والمجموعة والتنشيط.

شفرة المصدر في ultralytics/nn/modules/conv.py
141 142 143 144
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
    """Initializes Focus object with user defined channel, convolution, padding, group and activation values."""
    super().__init__()
    self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)

forward(x)

يطبق الالتفاف على التسلسل tensor وإرجاع الإخراج.

شكل الإدخال هو (ب ، ج ، ث ، ح) وشكل الإخراج هو (ب ، 4 ج ، ث / 2 ، ح / 2).

شفرة المصدر في ultralytics/nn/modules/conv.py
def forward(self, x):
    """
    Applies convolution to concatenated tensor and returns the output.

    Input shape is (b,c,w,h) and output shape is (b,4c,w/2,h/2).
    """
    return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))



ultralytics.nn.modules.conv.GhostConv

قواعد: Module

التفاف الأشباح https://github.com/huawei-noah/ghostnet.

شفرة المصدر في ultralytics/nn/modules/conv.py
157 158 159 160 161 162 163 164 165 166 167168169170 171 172
class GhostConv(nn.Module):
    """Ghost Convolution https://github.com/huawei-noah/ghostnet."""

    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
        """Initializes the GhostConv object with input channels, output channels, kernel size, stride, groups and
        activation.
        """
        super().__init__()
        c_ = c2 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)

    def forward(self, x):
        """Forward propagation through a Ghost Bottleneck layer with skip connection."""
        y = self.cv1(x)
        return torch.cat((y, self.cv2(y)), 1)

__init__(c1, c2, k=1, s=1, g=1, act=True)

تهيئة كائن GhostConv مع قنوات الإدخال وقنوات الإخراج وحجم kernel والخطوة والمجموعات و التنشيط.

شفرة المصدر في ultralytics/nn/modules/conv.py
160 161 162 163 164 165 166 167
def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
    """Initializes the GhostConv object with input channels, output channels, kernel size, stride, groups and
    activation.
    """
    super().__init__()
    c_ = c2 // 2  # hidden channels
    self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
    self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)

forward(x)

الانتشار الأمامي من خلال طبقة عنق الزجاجة الشبح مع تخطي الاتصال.

شفرة المصدر في ultralytics/nn/modules/conv.py
def forward(self, x):
    """Forward propagation through a Ghost Bottleneck layer with skip connection."""
    y = self.cv1(x)
    return torch.cat((y, self.cv2(y)), 1)



ultralytics.nn.modules.conv.RepConv

قواعد: Module

RepConv عبارة عن كتلة أساسية على غرار المندوب ، بما في ذلك حالة التدريب والنشر.

تستخدم هذه الوحدة في RT-DETR. تقييم/تقييمات https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py

شفرة المصدر في ultralytics/nn/modules/conv.py
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197198 199200 201202 203 204 205 206207 208 209 210 211 212 213 214 215 216 217 218219 220 221 222 223 224 225 226 227 228229230 231 232 233 234235236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260261 262 263 264265 266 267 268 269 270 271 272 273 274 275
class RepConv(nn.Module):
    """
    RepConv is a basic rep-style block, including training and deploy status.

    This module is used in RT-DETR.
    Based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
    """

    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
        """Initializes Light Convolution layer with inputs, outputs & optional activation function."""
        super().__init__()
        assert k == 3 and p == 1
        self.g = g
        self.c1 = c1
        self.c2 = c2
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

        self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None
        self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False)
        self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)

    def forward_fuse(self, x):
        """Forward process."""
        return self.act(self.conv(x))

    def forward(self, x):
        """Forward process."""
        id_out = 0 if self.bn is None else self.bn(x)
        return self.act(self.conv1(x) + self.conv2(x) + id_out)

    def get_equivalent_kernel_bias(self):
        """Returns equivalent kernel and bias by adding 3x3 kernel, 1x1 kernel and identity kernel with their biases."""
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
        kernelid, biasid = self._fuse_bn_tensor(self.bn)
        return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid

    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        """Pads a 1x1 tensor to a 3x3 tensor."""
        if kernel1x1 is None:
            return 0
        else:
            return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])

    def _fuse_bn_tensor(self, branch):
        """Generates appropriate kernels and biases for convolution by fusing branches of the neural network."""
        if branch is None:
            return 0, 0
        if isinstance(branch, Conv):
            kernel = branch.conv.weight
            running_mean = branch.bn.running_mean
            running_var = branch.bn.running_var
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn.eps
        elif isinstance(branch, nn.BatchNorm2d):
            if not hasattr(self, "id_tensor"):
                input_dim = self.c1 // self.g
                kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32)
                for i in range(self.c1):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std

    def fuse_convs(self):
        """Combines two convolution layers into a single layer and removes unused attributes from the class."""
        if hasattr(self, "conv"):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.conv = nn.Conv2d(
            in_channels=self.conv1.conv.in_channels,
            out_channels=self.conv1.conv.out_channels,
            kernel_size=self.conv1.conv.kernel_size,
            stride=self.conv1.conv.stride,
            padding=self.conv1.conv.padding,
            dilation=self.conv1.conv.dilation,
            groups=self.conv1.conv.groups,
            bias=True,
        ).requires_grad_(False)
        self.conv.weight.data = kernel
        self.conv.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__("conv1")
        self.__delattr__("conv2")
        if hasattr(self, "nm"):
            self.__delattr__("nm")
        if hasattr(self, "bn"):
            self.__delattr__("bn")
        if hasattr(self, "id_tensor"):
            self.__delattr__("id_tensor")

__init__(c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False)

تهيئة طبقة التفاف الضوء مع المدخلات والمخرجات ووظيفة التنشيط الاختيارية.

شفرة المصدر في ultralytics/nn/modules/conv.py
185 186 187 188 189 190 191 192 193 194 195196
def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
    """Initializes Light Convolution layer with inputs, outputs & optional activation function."""
    super().__init__()
    assert k == 3 and p == 1
    self.g = g
    self.c1 = c1
    self.c2 = c2
    self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None
    self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False)
    self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)

forward(x)

عملية إلى الأمام.

شفرة المصدر في ultralytics/nn/modules/conv.py
202 203 204 205
def forward(self, x):
    """Forward process."""
    id_out = 0 if self.bn is None else self.bn(x)
    return self.act(self.conv1(x) + self.conv2(x) + id_out)

forward_fuse(x)

عملية إلى الأمام.

شفرة المصدر في ultralytics/nn/modules/conv.py
def forward_fuse(self, x):
    """Forward process."""
    return self.act(self.conv(x))

fuse_convs()

يجمع طبقتين من الالتفاف في طبقة واحدة ويزيل الخصائص غير المستخدمة من الفئة.

شفرة المصدر في ultralytics/nn/modules/conv.py
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270271 272 273 274 275
def fuse_convs(self):
    """Combines two convolution layers into a single layer and removes unused attributes from the class."""
    if hasattr(self, "conv"):
        return
    kernel, bias = self.get_equivalent_kernel_bias()
    self.conv = nn.Conv2d(
        in_channels=self.conv1.conv.in_channels,
        out_channels=self.conv1.conv.out_channels,
        kernel_size=self.conv1.conv.kernel_size,
        stride=self.conv1.conv.stride,
        padding=self.conv1.conv.padding,
        dilation=self.conv1.conv.dilation,
        groups=self.conv1.conv.groups,
        bias=True,
    ).requires_grad_(False)
    self.conv.weight.data = kernel
    self.conv.bias.data = bias
    for para in self.parameters():
        para.detach_()
    self.__delattr__("conv1")
    self.__delattr__("conv2")
    if hasattr(self, "nm"):
        self.__delattr__("nm")
    if hasattr(self, "bn"):
        self.__delattr__("bn")
    if hasattr(self, "id_tensor"):
        self.__delattr__("id_tensor")

get_equivalent_kernel_bias()

ترجع النواة المكافئة والتحيز بإضافة نواة 3x3 ونواة 1×1 ونواة هوية مع تحيزاتها.

شفرة المصدر في ultralytics/nn/modules/conv.py
def get_equivalent_kernel_bias(self):
    """Returns equivalent kernel and bias by adding 3x3 kernel, 1x1 kernel and identity kernel with their biases."""
    kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
    kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
    kernelid, biasid = self._fuse_bn_tensor(self.bn)
    return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid



ultralytics.nn.modules.conv.ChannelAttention

قواعد: Module

وحدة الانتباه إلى القناة https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet.

شفرة المصدر في ultralytics/nn/modules/conv.py
278 279 280 281 282 283 284 285 286 287 288289290
class ChannelAttention(nn.Module):
    """Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet."""

    def __init__(self, channels: int) -> None:
        """Initializes the class and sets the basic configurations and instance variables required."""
        super().__init__()
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
        self.act = nn.Sigmoid()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Applies forward pass using activation on convolutions of the input, optionally using batch normalization."""
        return x * self.act(self.fc(self.pool(x)))

__init__(channels)

تهيئة الفئة وتعيين التكوينات الأساسية ومتغيرات المثيل المطلوبة.

شفرة المصدر في ultralytics/nn/modules/conv.py
281 282 283 284 285 286
def __init__(self, channels: int) -> None:
    """Initializes the class and sets the basic configurations and instance variables required."""
    super().__init__()
    self.pool = nn.AdaptiveAvgPool2d(1)
    self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
    self.act = nn.Sigmoid()

forward(x)

يطبق التمرير الأمامي باستخدام التنشيط على تلافيف الإدخال ، اختياريا باستخدام تطبيع الدفعات.

شفرة المصدر في ultralytics/nn/modules/conv.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """Applies forward pass using activation on convolutions of the input, optionally using batch normalization."""
    return x * self.act(self.fc(self.pool(x)))



ultralytics.nn.modules.conv.SpatialAttention

قواعد: Module

وحدة الانتباه المكاني.

شفرة المصدر في ultralytics/nn/modules/conv.py
293 294 295 296 297 298299 300 301 302 303304305 306
class SpatialAttention(nn.Module):
    """Spatial-attention module."""

    def __init__(self, kernel_size=7):
        """Initialize Spatial-attention module with kernel size argument."""
        super().__init__()
        assert kernel_size in (3, 7), "kernel size must be 3 or 7"
        padding = 3 if kernel_size == 7 else 1
        self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.act = nn.Sigmoid()

    def forward(self, x):
        """Apply channel and spatial attention on input for feature recalibration."""
        return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))

__init__(kernel_size=7)

تهيئة وحدة الانتباه المكاني مع وسيطة حجم kernel.

شفرة المصدر في ultralytics/nn/modules/conv.py
def __init__(self, kernel_size=7):
    """Initialize Spatial-attention module with kernel size argument."""
    super().__init__()
    assert kernel_size in (3, 7), "kernel size must be 3 or 7"
    padding = 3 if kernel_size == 7 else 1
    self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
    self.act = nn.Sigmoid()

forward(x)

تطبيق القناة والاهتمام المكاني على الإدخال لإعادة معايرة المعالم.

شفرة المصدر في ultralytics/nn/modules/conv.py
def forward(self, x):
    """Apply channel and spatial attention on input for feature recalibration."""
    return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))



ultralytics.nn.modules.conv.CBAM

قواعد: Module

وحدة انتباه الكتلة التلافيفية.

شفرة المصدر في ultralytics/nn/modules/conv.py
309 310 311 312 313 314 315 316 317 318319 320
class CBAM(nn.Module):
    """Convolutional Block Attention Module."""

    def __init__(self, c1, kernel_size=7):
        """Initialize CBAM with given input channel (c1) and kernel size."""
        super().__init__()
        self.channel_attention = ChannelAttention(c1)
        self.spatial_attention = SpatialAttention(kernel_size)

    def forward(self, x):
        """Applies the forward pass through C1 module."""
        return self.spatial_attention(self.channel_attention(x))

__init__(c1, kernel_size=7)

قم بتهيئة CBAM باستخدام قناة إدخال معينة (c1) وحجم kernel.

شفرة المصدر في ultralytics/nn/modules/conv.py
312 313 314 315 316
def __init__(self, c1, kernel_size=7):
    """Initialize CBAM with given input channel (c1) and kernel size."""
    super().__init__()
    self.channel_attention = ChannelAttention(c1)
    self.spatial_attention = SpatialAttention(kernel_size)

forward(x)

يطبق الممر الأمامي عبر وحدة C1.

شفرة المصدر في ultralytics/nn/modules/conv.py
def forward(self, x):
    """Applies the forward pass through C1 module."""
    return self.spatial_attention(self.channel_attention(x))



ultralytics.nn.modules.conv.Concat

قواعد: Module

سلسلة قائمة من الموترات على طول البعد.

شفرة المصدر في ultralytics/nn/modules/conv.py
323 324 325 326 327 328329 330 331 332333
class Concat(nn.Module):
    """Concatenate a list of tensors along dimension."""

    def __init__(self, dimension=1):
        """Concatenates a list of tensors along a specified dimension."""
        super().__init__()
        self.d = dimension

    def forward(self, x):
        """Forward pass for the YOLOv8 mask Proto module."""
        return torch.cat(x, self.d)

__init__(dimension=1)

يربط قائمة من الموترات على طول بعد محدد.

شفرة المصدر في ultralytics/nn/modules/conv.py
326 327 328 329
def __init__(self, dimension=1):
    """Concatenates a list of tensors along a specified dimension."""
    super().__init__()
    self.d = dimension

forward(x)

تمريرة أمامية ل YOLOv8 قناع وحدة بروتو.

شفرة المصدر في ultralytics/nn/modules/conv.py
def forward(self, x):
    """Forward pass for the YOLOv8 mask Proto module."""
    return torch.cat(x, self.d)



ultralytics.nn.modules.conv.autopad(k, p=None, d=1)

لوحة لمخرجات الشكل "نفسه".

شفرة المصدر في ultralytics/nn/modules/conv.py
def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p





تم إنشاء 2023-11-12, اخر تحديث 2023-11-25
المؤلفون: جلين جوشر (3)