تخطي إلى المحتوى

تقدير الوضعية

أمثلة على تقدير الوضعية

تقدير الوضعية هي مهمة تتضمن تحديد موقع نقاط محددة في الصورة، ويشار إليها عادةً بالنقاط الرئيسية. يمكن أن تمثل النقاط الرئيسية أجزاءً مختلفة من الجسم مثل المفاصل أو المعالم أو السمات المميزة الأخرى. عادةً ما يتم تمثيل مواقع النقاط الرئيسية على هيئة مجموعة من 2D [x, y] أو ثلاثي الأبعاد [x, y, visible] الإحداثيات.

يكون ناتج نموذج تقدير الوضعية عبارة عن مجموعة من النقاط التي تمثل النقاط الرئيسية على كائن ما في الصورة، وعادةً ما تكون مصحوبة بدرجات الثقة لكل نقطة. يعد تقدير الوضعية خيارًا جيدًا عندما تحتاج إلى تحديد أجزاء معينة من كائن ما في المشهد، وموقعها بالنسبة لبعضها البعض.


شاهد: تقدير الوضعية باستخدام Ultralytics YOLO .

شاهد: تقدير الوضعية باستخدام Ultralytics HUB.

نصيحة

YOLO11 تشكل تستخدم النماذج -pose اللاحقة، أي yolo11n-pose.pt. يتم تدريب هذه النماذج على النقاط الرئيسية لـ COCO مجموعة البيانات وهي مناسبة لمجموعة متنوعة من مهام تقدير الوضعية.

في نموذج الوضعية الافتراضي YOLO11 ، هناك 17 نقطة رئيسية، تمثل كل منها جزءاً مختلفاً من جسم الإنسان. فيما يلي تعيين كل مؤشر لمفصل الجسم الخاص به:

0: الأنف 1: العين اليسرى 2: العين اليمنى 3: الأذن اليسرى 4: الأذن اليمنى 4: الأذن اليمنى 5: الكتف الأيسر 6: الكتف الأيمن 6: الكتف الأيمن 7: الكوع الأيسر 7: الكوع الأيسر 8: الكوع الأيمن 9: المعصم الأيسر 10: المعصم الأيمن 11: الورك الأيسر 12: الورك الأيمن 12: الورك الأيمن 13: الركبة اليسرى 14: الركبة اليمنى 15: الكاحل الأيسر 16: الكاحل الأيمن

النماذج

YOLO11 تظهر هنا نماذج الوضعية المُدرَّبة مسبقًا. يتم تدريب نماذج الكشف والقطعة والوضعية مسبقًا على مجموعة بيانات COCO، بينما يتم تدريب نماذج التصنيف مسبقًا على مجموعة بيانات ImageNet.

يتم تنزيل النماذج تلقائياً من أحدثإصدار Ultralytics عند الاستخدام الأول.

الطراز الحجم
(بكسل)
mAPpose
50-95
mAPpose
50
السرعة
CPU ONNX
(مللي ثانية)
السرعة
T4 T4TensorRT10
(مللي ثانية)
بارامز
(م)

(ب)
YOLO11n-pose 640 50.0 81.0 52.4 ± 0.5 1.7 ± 0.0 2.9 7.6
YOLO11s-pose 640 58.9 86.3 90.5 ± 0.6 2.6 ± 0.0 9.9 23.2
YOLO11m-pose 640 64.9 89.4 187.3 ± 0.8 4.9 ± 0.1 20.9 71.7
YOLO11l-pose 640 66.1 89.9 247.7 ± 1.1 6.4 ± 0.1 26.2 90.7
YOLO11x-بوز 640 69.5 91.1 488.0 ± 13.9 12.1 ± 0.2 58.8 203.3
  • مافال القيم هي لنموذج واحد بمقياس واحد على COCO Keypoints val2017 مجموعة البيانات.
    إعادة الإنتاج بواسطة yolo val pose data=coco-pose.yaml device=0
  • السرعة متوسطها على صور COCO val باستخدام أمازون إي سي 2 بي 4 دي على سبيل المثال.
    إعادة الإنتاج بواسطة yolo val pose data=coco-pose.yaml batch=1 device=0|cpu

القطار

قم بتدريب نموذج YOLO11-pose على مجموعة بيانات COCO8-passe.

مثال على ذلك

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.yaml")  # build a new model from YAML
model = YOLO("yolo11n-pose.pt")  # load a pretrained model (recommended for training)
model = YOLO("yolo11n-pose.yaml").load("yolo11n-pose.pt")  # build from YAML and transfer weights

# Train the model
results = model.train(data="coco8-pose.yaml", epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo pose train data=coco8-pose.yaml model=yolo11n-pose.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo pose train data=coco8-pose.yaml model=yolo11n-pose.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo pose train data=coco8-pose.yaml model=yolo11n-pose.yaml pretrained=yolo11n-pose.pt epochs=100 imgsz=640

تنسيق مجموعة البيانات

YOLO يمكن الاطلاع على تنسيق مجموعة البيانات بالتفصيل في دليل مجموعة البيانات. لتحويل مجموعة البيانات الموجودة لديك من تنسيقات أخرى (مثل COCO وما إلى ذلك) إلى تنسيق YOLO ، يرجى استخدام أداة JSON2YOLO بواسطة Ultralytics.

فال

التحقق من صحة نموذج YOLO11n-pose المدرّب الدقة على مجموعة بيانات COCO8-pose. لا حاجة إلى أي وسيطات لأن model تحتفظ بتدريبها data والوسائط كسمات نموذجية.

مثال على ذلك

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map  # map50-95
metrics.box.map50  # map50
metrics.box.map75  # map75
metrics.box.maps  # a list contains map50-95 of each category
yolo pose val model=yolo11n-pose.pt  # val official model
yolo pose val model=path/to/best.pt  # val custom model

التنبؤ

استخدم نموذج YOLO11n-pose المدرّب لتشغيل التنبؤات على الصور.

مثال على ذلك

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Predict with the model
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
yolo pose predict model=yolo11n-pose.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model
yolo pose predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

انظر بالكامل predict تفاصيل الوضع في التنبؤ الصفحة.

التصدير

قم بتصدير نموذج YOLO11n Pose إلى تنسيق مختلف مثل ONNX ، CoreML ، إلخ.

مثال على ذلك

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom trained model

# Export the model
model.export(format="onnx")
yolo export model=yolo11n-pose.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

ترد تنسيقات التصدير المتاحة YOLO11-pose في الجدول أدناه. يمكنك التصدير إلى أي تنسيق باستخدام format الحجة، أي format='onnx' أو format='engine'. يمكنك التنبؤ أو التحقق من الصحة مباشرةً على النماذج المصدرة، أي yolo predict model=yolo11n-pose.onnx. تظهر أمثلة الاستخدام للنموذج الخاص بك بعد اكتمال التصدير.

التنسيق format الجدال الطراز البيانات الوصفية الحجج
PyTorch - yolo11n-pose.pt -
TorchScript torchscript yolo11n-pose.torchscript imgsz, optimize, batch
ONNX onnx yolo11n-pose.onnx imgsz, half, dynamic, simplify, opset, batch
OpenVINO openvino yolo11n-pose_openvino_model/ imgsz, half, int8, batch
TensorRT engine yolo11n-pose.engine imgsz, half, dynamic, simplify, workspace, int8, batch
CoreML coreml yolo11n-pose.mlpackage imgsz, half, int8, nms, batch
TF SavedModel saved_model yolo11n-pose_saved_model/ imgsz, keras, int8, batch
TF GraphDef pb yolo11n-pose.pb imgsz, batch
TF لايت tflite yolo11n-pose.tflite imgsz, half, int8, batch
TF إيدج TPU edgetpu yolo11n-pose_edgetpu.tflite imgsz
TF.js tfjs yolo11n-pose_web_model/ imgsz, half, int8, batch
PaddlePaddle paddle yolo11n-pose_paddle_model/ imgsz, batch
MNN mnn yolo11n-pose.mnn imgsz, batch, int8, half
NCNN ncnn yolo11n-pose_ncnn_model/ imgsz, half, batch
IMX500 imx yolo11n-pose_imx_model/ imgsz, int8

انظر بالكامل export التفاصيل في التصدير الصفحة.

الأسئلة الشائعة

ما هو تقدير الوضعية باستخدام Ultralytics YOLO11 وكيف يعمل؟

يتضمن تقدير الوضعية باستخدام Ultralytics YOLO11 تحديد نقاط معينة، تُعرف باسم النقاط الرئيسية، في الصورة. تمثل نقاط المفاتيح هذه عادةً المفاصل أو غيرها من السمات المهمة للجسم. تتضمن المخرجات [x, y] الإحداثيات ودرجات الثقة لكل نقطة. YOLO11-صُممت نماذج الأغراض خصيصًا لهذه المهمة وتستخدم -pose اللاحقة، مثل yolo11n-pose.pt. يتم تدريب هذه النماذج مسبقًا على مجموعات بيانات مثل النقاط الرئيسية لـ COCO ويمكن استخدامها في مهام تقدير الوضعيات المختلفة. لمزيد من المعلومات، يرجى زيارة صفحة تقدير الوضعية.

كيف يمكنني تدريب نموذج YOLO11-pose على مجموعة بيانات مخصصة؟

يتضمّن تدريب نموذج YOLO11-pose على مجموعة بيانات مخصصة تحميل نموذج، إما نموذج جديد مُعرّف بواسطة ملف YAML أو نموذج مُدرّب مسبقًا. يمكنك بعد ذلك بدء عملية التدريب باستخدام مجموعة البيانات والمعلمات المحددة.

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.yaml")  # build a new model from YAML
model = YOLO("yolo11n-pose.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="your-dataset.yaml", epochs=100, imgsz=640)

للحصول على تفاصيل شاملة عن التدريب، راجع قسم التدريب.

كيف يمكنني التحقق من صحة نموذج YOLO11-pose المدرّب؟

تتضمن عملية التحقق من صحة نموذج YOLO11-الغرض تقييم دقته باستخدام نفس معلمات مجموعة البيانات التي تم الاحتفاظ بها أثناء التدريب. إليك مثالاً على ذلك:

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered

لمزيد من المعلومات، يرجى زيارة قسم فال.

هل يمكنني تصدير نموذج YOLO11-pose إلى تنسيقات أخرى، وكيف؟

نعم، يمكنك تصدير نموذج YOLO11-pose إلى صيغ مختلفة مثل ONNX و CoreML و TensorRT وغيرها. يمكن القيام بذلك إما باستخدام Python أو واجهة سطر الأوامر (CLI).

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom trained model

# Export the model
model.export(format="onnx")

راجع قسم التصدير لمزيد من التفاصيل.

ما هي النماذج المتوفرة Ultralytics YOLO11 -الغرض ومقاييس أدائها؟

Ultralytics YOLO11 تقدم نماذج وضعيات مختلفة مُدرَّبة مسبقًا مثل YOLO11n-pose و YOLO11s-pose و YOLO11m-pose وغيرها. تختلف هذه النماذج من حيث الحجم والدقة (mAP) والسرعة. على سبيل المثال، يحقق الطراز YOLO11n-pose دقة (mAPpose50-95) تبلغ 50.4 و(mAPpose50) تبلغ 80.1. للاطلاع على قائمة كاملة وتفاصيل الأداء، يرجى زيارة قسم النماذج.

📅 تم إنشاؤها منذ 1 سنة مضت ✏️ تم التحديث منذ 1 شهر

التعليقات