Zum Inhalt springen

Posen-SchÀtzung

Beispiele fĂŒr PosenschĂ€tzungen

Bei der SchÀtzung der Körperhaltung geht es darum, die Position bestimmter Punkte in einem Bild zu bestimmen, die normalerweise als Keypoints bezeichnet werden. Die Keypoints können verschiedene Teile des Objekts darstellen, z. B. Gelenke, Orientierungspunkte oder andere charakteristische Merkmale. Die Positionen der Keypoints werden in der Regel als eine Reihe von 2D [x, y] oder 3D [x, y, visible] Koordinaten.

Das Ergebnis eines Modells zur PosenschĂ€tzung ist eine Reihe von Punkten, die die SchlĂŒsselpunkte eines Objekts im Bild darstellen, normalerweise zusammen mit den Vertrauenswerten fĂŒr jeden Punkt. Die PosenschĂ€tzung ist eine gute Wahl, wenn du bestimmte Teile eines Objekts in einer Szene und ihre Lage zueinander identifizieren musst.


Pass auf: Pose Estimation mit Ultralytics YOLOv8 .

Pass auf: Pose Estimation mit Ultralytics HUB.

Tipp

YOLOv8 Pose Modelle verwenden die -pose Suffix, d.h.. yolov8n-pose.pt. Diese Modelle werden anhand der COCO-Keypoints Datensatz und eignen sich fĂŒr eine Vielzahl von PosenschĂ€tzungsaufgaben.

Modelle

YOLOv8 werden hier die vortrainierten Pose-Modelle gezeigt. Die Modelle "Detect", "Segment" und "Pose" wurden mit dem COCO-Datensatz trainiert, wÀhrend die Modelle "Classify" mit dem ImageNet-Datensatz trainiert wurden.

Die Modelle werden bei der ersten Verwendung automatisch von der neuestenVersion von Ultralytics heruntergeladen.

Modell GrĂ¶ĂŸe
(Pixel)
mAPpose
50-95
mAPpose
50
Geschwindigkeit
CPU ONNX
(ms)
Geschwindigkeit
A100 TensorRT
(ms)
params
(M)
FLOPs
(B)
YOLOv8n-pose 640 50.4 80.1 131.8 1.18 3.3 9.2
YOLOv8s-pose 640 60.0 86.2 233.2 1.42 11.6 30.2
YOLOv8m-pose 640 65.0 88.8 456.3 2.00 26.4 81.0
YOLOv8l-pose 640 67.6 90.0 784.5 2.59 44.4 168.6
YOLOv8x-pose 640 69.2 90.2 1607.1 3.73 69.4 263.2
YOLOv8x-pose-p6 1280 71.6 91.2 4088.7 10.04 99.1 1066.4
  • mAPval Werte sind fĂŒr ein Modell mit einer Skala auf COCO Keypoints val2017 Datensatz.
    Reproduzieren durch yolo val pose data=coco-pose.yaml device=0
  • Geschwindigkeit gemittelt ĂŒber die COCO val-Bilder unter Verwendung eines Amazon EC2 P4d Instanz.
    Reproduzieren durch yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu

Zug

Trainiere ein YOLOv8-pose-Modell mit dem COCO128-pose-Datensatz.

Beispiel

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-pose.yaml")  # build a new model from YAML
model = YOLO("yolov8n-pose.pt")  # load a pretrained model (recommended for training)
model = YOLO("yolov8n-pose.yaml").load("yolov8n-pose.pt")  # build from YAML and transfer weights

# Train the model
results = model.train(data="coco8-pose.yaml", epochs=100, imgsz=640)
# Build a new model from YAML and start training from scratch
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml epochs=100 imgsz=640

# Start training from a pretrained *.pt model
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640

# Build a new model from YAML, transfer pretrained weights to it and start training
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml pretrained=yolov8n-pose.pt epochs=100 imgsz=640

Format des Datensatzes

YOLO pose-Datensatzformat findest du im Detail im Dataset Guide. Um deinen bestehenden Datensatz aus anderen Formaten (wie COCO etc.) in das YOLO Format zu konvertieren, verwende bitte das JSON2YOLO Tool von Ultralytics.

Val

Validiere die Genauigkeit des trainierten YOLOv8n-pose-Modells auf dem COCO128-pose-Datensatz. Es muss kein Argument ĂŒbergeben werden, da die model seine Ausbildung beibehĂ€lt data und Argumente als Modellattribute.

Beispiel

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Validate the model
metrics = model.val()  # no arguments needed, dataset and settings remembered
metrics.box.map  # map50-95
metrics.box.map50  # map50
metrics.box.map75  # map75
metrics.box.maps  # a list contains map50-95 of each category
yolo pose val model=yolov8n-pose.pt  # val official model
yolo pose val model=path/to/best.pt  # val custom model

Vorhersage

Verwende ein trainiertes YOLOv8n-pose Modell, um Vorhersagen fĂŒr Bilder zu treffen.

Beispiel

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom model

# Predict with the model
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
yolo pose predict model=yolov8n-pose.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model
yolo pose predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

Siehe voll predict Modus Details in der Vorhersage Seite.

exportieren

Exportiere ein YOLOv8n Posenmodell in ein anderes Format wie ONNX, CoreML, etc.

Beispiel

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n-pose.pt")  # load an official model
model = YOLO("path/to/best.pt")  # load a custom trained model

# Export the model
model.export(format="onnx")
yolo export model=yolov8n-pose.pt format=onnx  # export official model
yolo export model=path/to/best.pt format=onnx  # export custom trained model

Die verfĂŒgbaren YOLOv8-pose Exportformate findest du in der Tabelle unten. Du kannst in jedes beliebige Format exportieren, indem du die format Argument, d.h. format='onnx' oder format='engine'. Du kannst exportierte Modelle direkt vorhersagen oder validieren, d.h. yolo predict model=yolov8n-pose.onnx. Nach Abschluss des Exports werden Anwendungsbeispiele fĂŒr dein Modell angezeigt.

Format format Argument Modell Metadaten Argumente
PyTorch - yolov8n-pose.pt ✅ -
TorchScript torchscript yolov8n-pose.torchscript ✅ imgsz, optimize, batch
ONNX onnx yolov8n-pose.onnx ✅ imgsz, half, dynamic, simplify, opset, batch
OpenVINO openvino yolov8n-pose_openvino_model/ ✅ imgsz, half, int8, batch
TensorRT engine yolov8n-pose.engine ✅ imgsz, half, dynamic, simplify, workspace, int8, batch
CoreML coreml yolov8n-pose.mlpackage ✅ imgsz, half, int8, nms, batch
TF SavedModel saved_model yolov8n-pose_saved_model/ ✅ imgsz, keras, int8, batch
TF GraphDef pb yolov8n-pose.pb ❌ imgsz, batch
TF Lite tflite yolov8n-pose.tflite ✅ imgsz, half, int8, batch
TF Kante TPU edgetpu yolov8n-pose_edgetpu.tflite ✅ imgsz
TF.js tfjs yolov8n-pose_web_model/ ✅ imgsz, half, int8, batch
PaddlePaddle paddle yolov8n-pose_paddle_model/ ✅ imgsz, batch
NCNN ncnn yolov8n-pose_ncnn_model/ ✅ imgsz, half, batch

Siehe voll export Details in der exportieren Seite.



Created 2023-11-12, Updated 2024-06-10
Authors: glenn-jocher (18), Burhan-Q (4), RizwanMunawar (1), AyushExel (1), Laughing-q (1)

Kommentare