सामग्री पर जाएं

के लिए संदर्भ ultralytics/data/loaders.py

नोट

यह फ़ाइल यहाँ उपलब्ध है https://github.com/ultralytics/ultralytics/बूँद/मुख्य/ultralytics/data/loaders.py का उपयोग करें। यदि आप कोई समस्या देखते हैं तो कृपया पुल अनुरोध का योगदान करके इसे ठीक करने में मदद करें 🛠️। 🙏 धन्यवाद !



ultralytics.data.loaders.SourceTypes dataclass

भविष्यवाणियों के लिए विभिन्न प्रकार के इनपुट स्रोतों का प्रतिनिधित्व करने के लिए वर्ग।

में स्रोत कोड ultralytics/data/loaders.py
@dataclass
class SourceTypes:
    """Class to represent various types of input sources for predictions."""

    stream: bool = False
    screenshot: bool = False
    from_img: bool = False
    tensor: bool = False



ultralytics.data.loaders.LoadStreams

विभिन्न प्रकार की वीडियो धाराओं के लिए स्ट्रीम लोडर, आरटीएसपी, आरटीएमपी, एचटीटीपी और टीसीपी धाराओं का समर्थन करता है।

विशेषताएँ:

नाम प्रकार या क़िस्‍म
sources str

वीडियो स्ट्रीम के लिए स्रोत इनपुट पथ या URL.

vid_stride int

वीडियो फ्रेम-दर स्ट्राइड, डिफ़ॉल्ट रूप से 1.

buffer bool

इनपुट स्ट्रीम को बफर करना है या नहीं, डिफ़ॉल्ट को गलत बनाता है।

running bool

यह इंगित करने के लिए फ़्लैग करें कि स्ट्रीमिंग थ्रेड चल रहा है या नहीं.

mode str

वास्तविक समय कैप्चर का संकेत देने वाले 'स्ट्रीम' पर सेट करें।

imgs list

प्रत्येक स्ट्रीम के लिए छवि फ़्रेम की सूची.

fps list

प्रत्येक स्ट्रीम के लिए एफपीएस की सूची।

frames list

प्रत्येक स्ट्रीम के लिए कुल फ़्रेम की सूची.

threads list

प्रत्येक स्ट्रीम के लिए थ्रेड्स की सूची.

shape list

प्रत्येक स्ट्रीम के लिए आकृतियों की सूची.

caps list

सीवी 2 की सूची। Videoप्रत्येक स्ट्रीम के लिए ऑब्जेक्ट कैप्चर करें.

bs int

प्रसंस्करण के लिए बैच का आकार।

विधियाँ:

नाम या क़िस्‍म
__init__

स्ट्रीम लोडर को इनइनियलाइज़ करें.

update

डेमॉन थ्रेड में स्ट्रीम फ्रेम पढ़ें।

close

स्ट्रीम लोडर बंद करें और संसाधन जारी करें।

__iter__

कक्षा के लिए एक इटरेटर ऑब्जेक्ट देता है।

__next__

संसाधन पथ, रूपांतरित, और प्रसंस्करण के लिए मूल छवियों देता है।

__len__

स्रोत ऑब्जेक्ट की लंबाई लौटाएं।

उदाहरण
yolo predict source='rtsp://example.com/media.mp4'
में स्रोत कोड ultralytics/data/loaders.py
class LoadStreams:
    """
    Stream Loader for various types of video streams, Supports RTSP, RTMP, HTTP, and TCP streams.

    Attributes:
        sources (str): The source input paths or URLs for the video streams.
        vid_stride (int): Video frame-rate stride, defaults to 1.
        buffer (bool): Whether to buffer input streams, defaults to False.
        running (bool): Flag to indicate if the streaming thread is running.
        mode (str): Set to 'stream' indicating real-time capture.
        imgs (list): List of image frames for each stream.
        fps (list): List of FPS for each stream.
        frames (list): List of total frames for each stream.
        threads (list): List of threads for each stream.
        shape (list): List of shapes for each stream.
        caps (list): List of cv2.VideoCapture objects for each stream.
        bs (int): Batch size for processing.

    Methods:
        __init__: Initialize the stream loader.
        update: Read stream frames in daemon thread.
        close: Close stream loader and release resources.
        __iter__: Returns an iterator object for the class.
        __next__: Returns source paths, transformed, and original images for processing.
        __len__: Return the length of the sources object.

    Example:
         ```bash
         yolo predict source='rtsp://example.com/media.mp4'
         ```
    """

    def __init__(self, sources="file.streams", vid_stride=1, buffer=False):
        """Initialize instance variables and check for consistent input stream shapes."""
        torch.backends.cudnn.benchmark = True  # faster for fixed-size inference
        self.buffer = buffer  # buffer input streams
        self.running = True  # running flag for Thread
        self.mode = "stream"
        self.vid_stride = vid_stride  # video frame-rate stride

        sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
        n = len(sources)
        self.bs = n
        self.fps = [0] * n  # frames per second
        self.frames = [0] * n
        self.threads = [None] * n
        self.caps = [None] * n  # video capture objects
        self.imgs = [[] for _ in range(n)]  # images
        self.shape = [[] for _ in range(n)]  # image shapes
        self.sources = [ops.clean_str(x) for x in sources]  # clean source names for later
        for i, s in enumerate(sources):  # index, source
            # Start thread to read frames from video stream
            st = f"{i + 1}/{n}: {s}... "
            if urlparse(s).hostname in {"www.youtube.com", "youtube.com", "youtu.be"}:  # if source is YouTube video
                # YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/LNwODJXcvt4'
                s = get_best_youtube_url(s)
            s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
            if s == 0 and (IS_COLAB or IS_KAGGLE):
                raise NotImplementedError(
                    "'source=0' webcam not supported in Colab and Kaggle notebooks. "
                    "Try running 'source=0' in a local environment."
                )
            self.caps[i] = cv2.VideoCapture(s)  # store video capture object
            if not self.caps[i].isOpened():
                raise ConnectionError(f"{st}Failed to open {s}")
            w = int(self.caps[i].get(cv2.CAP_PROP_FRAME_WIDTH))
            h = int(self.caps[i].get(cv2.CAP_PROP_FRAME_HEIGHT))
            fps = self.caps[i].get(cv2.CAP_PROP_FPS)  # warning: may return 0 or nan
            self.frames[i] = max(int(self.caps[i].get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float(
                "inf"
            )  # infinite stream fallback
            self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30  # 30 FPS fallback

            success, im = self.caps[i].read()  # guarantee first frame
            if not success or im is None:
                raise ConnectionError(f"{st}Failed to read images from {s}")
            self.imgs[i].append(im)
            self.shape[i] = im.shape
            self.threads[i] = Thread(target=self.update, args=([i, self.caps[i], s]), daemon=True)
            LOGGER.info(f"{st}Success ✅ ({self.frames[i]} frames of shape {w}x{h} at {self.fps[i]:.2f} FPS)")
            self.threads[i].start()
        LOGGER.info("")  # newline

    def update(self, i, cap, stream):
        """Read stream `i` frames in daemon thread."""
        n, f = 0, self.frames[i]  # frame number, frame array
        while self.running and cap.isOpened() and n < (f - 1):
            if len(self.imgs[i]) < 30:  # keep a <=30-image buffer
                n += 1
                cap.grab()  # .read() = .grab() followed by .retrieve()
                if n % self.vid_stride == 0:
                    success, im = cap.retrieve()
                    if not success:
                        im = np.zeros(self.shape[i], dtype=np.uint8)
                        LOGGER.warning("WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.")
                        cap.open(stream)  # re-open stream if signal was lost
                    if self.buffer:
                        self.imgs[i].append(im)
                    else:
                        self.imgs[i] = [im]
            else:
                time.sleep(0.01)  # wait until the buffer is empty

    def close(self):
        """Close stream loader and release resources."""
        self.running = False  # stop flag for Thread
        for thread in self.threads:
            if thread.is_alive():
                thread.join(timeout=5)  # Add timeout
        for cap in self.caps:  # Iterate through the stored VideoCapture objects
            try:
                cap.release()  # release video capture
            except Exception as e:
                LOGGER.warning(f"WARNING ⚠️ Could not release VideoCapture object: {e}")
        cv2.destroyAllWindows()

    def __iter__(self):
        """Iterates through YOLO image feed and re-opens unresponsive streams."""
        self.count = -1
        return self

    def __next__(self):
        """Returns source paths, transformed and original images for processing."""
        self.count += 1

        images = []
        for i, x in enumerate(self.imgs):
            # Wait until a frame is available in each buffer
            while not x:
                if not self.threads[i].is_alive() or cv2.waitKey(1) == ord("q"):  # q to quit
                    self.close()
                    raise StopIteration
                time.sleep(1 / min(self.fps))
                x = self.imgs[i]
                if not x:
                    LOGGER.warning(f"WARNING ⚠️ Waiting for stream {i}")

            # Get and remove the first frame from imgs buffer
            if self.buffer:
                images.append(x.pop(0))

            # Get the last frame, and clear the rest from the imgs buffer
            else:
                images.append(x.pop(-1) if x else np.zeros(self.shape[i], dtype=np.uint8))
                x.clear()

        return self.sources, images, [""] * self.bs

    def __len__(self):
        """Return the length of the sources object."""
        return self.bs  # 1E12 frames = 32 streams at 30 FPS for 30 years

__init__(sources='file.streams', vid_stride=1, buffer=False)

इंस्टेंस वैरिएबल को इनिशियलाइज़ करें और लगातार इनपुट स्ट्रीम आकृतियों की जांच करें।

में स्रोत कोड ultralytics/data/loaders.py
def __init__(self, sources="file.streams", vid_stride=1, buffer=False):
    """Initialize instance variables and check for consistent input stream shapes."""
    torch.backends.cudnn.benchmark = True  # faster for fixed-size inference
    self.buffer = buffer  # buffer input streams
    self.running = True  # running flag for Thread
    self.mode = "stream"
    self.vid_stride = vid_stride  # video frame-rate stride

    sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
    n = len(sources)
    self.bs = n
    self.fps = [0] * n  # frames per second
    self.frames = [0] * n
    self.threads = [None] * n
    self.caps = [None] * n  # video capture objects
    self.imgs = [[] for _ in range(n)]  # images
    self.shape = [[] for _ in range(n)]  # image shapes
    self.sources = [ops.clean_str(x) for x in sources]  # clean source names for later
    for i, s in enumerate(sources):  # index, source
        # Start thread to read frames from video stream
        st = f"{i + 1}/{n}: {s}... "
        if urlparse(s).hostname in {"www.youtube.com", "youtube.com", "youtu.be"}:  # if source is YouTube video
            # YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/LNwODJXcvt4'
            s = get_best_youtube_url(s)
        s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
        if s == 0 and (IS_COLAB or IS_KAGGLE):
            raise NotImplementedError(
                "'source=0' webcam not supported in Colab and Kaggle notebooks. "
                "Try running 'source=0' in a local environment."
            )
        self.caps[i] = cv2.VideoCapture(s)  # store video capture object
        if not self.caps[i].isOpened():
            raise ConnectionError(f"{st}Failed to open {s}")
        w = int(self.caps[i].get(cv2.CAP_PROP_FRAME_WIDTH))
        h = int(self.caps[i].get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = self.caps[i].get(cv2.CAP_PROP_FPS)  # warning: may return 0 or nan
        self.frames[i] = max(int(self.caps[i].get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float(
            "inf"
        )  # infinite stream fallback
        self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30  # 30 FPS fallback

        success, im = self.caps[i].read()  # guarantee first frame
        if not success or im is None:
            raise ConnectionError(f"{st}Failed to read images from {s}")
        self.imgs[i].append(im)
        self.shape[i] = im.shape
        self.threads[i] = Thread(target=self.update, args=([i, self.caps[i], s]), daemon=True)
        LOGGER.info(f"{st}Success ✅ ({self.frames[i]} frames of shape {w}x{h} at {self.fps[i]:.2f} FPS)")
        self.threads[i].start()
    LOGGER.info("")  # newline

__iter__()

के माध्यम से पुनरावृत्त YOLO छवि फ़ीड और अनुत्तरदायी धाराओं को फिर से खोलता है।

में स्रोत कोड ultralytics/data/loaders.py
def __iter__(self):
    """Iterates through YOLO image feed and re-opens unresponsive streams."""
    self.count = -1
    return self

__len__()

स्रोत ऑब्जेक्ट की लंबाई लौटाएं।

में स्रोत कोड ultralytics/data/loaders.py
def __len__(self):
    """Return the length of the sources object."""
    return self.bs  # 1E12 frames = 32 streams at 30 FPS for 30 years

__next__()

प्रसंस्करण के लिए स्रोत पथ, रूपांतरित और मूल चित्र लौटाता है।

में स्रोत कोड ultralytics/data/loaders.py
def __next__(self):
    """Returns source paths, transformed and original images for processing."""
    self.count += 1

    images = []
    for i, x in enumerate(self.imgs):
        # Wait until a frame is available in each buffer
        while not x:
            if not self.threads[i].is_alive() or cv2.waitKey(1) == ord("q"):  # q to quit
                self.close()
                raise StopIteration
            time.sleep(1 / min(self.fps))
            x = self.imgs[i]
            if not x:
                LOGGER.warning(f"WARNING ⚠️ Waiting for stream {i}")

        # Get and remove the first frame from imgs buffer
        if self.buffer:
            images.append(x.pop(0))

        # Get the last frame, and clear the rest from the imgs buffer
        else:
            images.append(x.pop(-1) if x else np.zeros(self.shape[i], dtype=np.uint8))
            x.clear()

    return self.sources, images, [""] * self.bs

close()

स्ट्रीम लोडर बंद करें और संसाधन जारी करें।

में स्रोत कोड ultralytics/data/loaders.py
def close(self):
    """Close stream loader and release resources."""
    self.running = False  # stop flag for Thread
    for thread in self.threads:
        if thread.is_alive():
            thread.join(timeout=5)  # Add timeout
    for cap in self.caps:  # Iterate through the stored VideoCapture objects
        try:
            cap.release()  # release video capture
        except Exception as e:
            LOGGER.warning(f"WARNING ⚠️ Could not release VideoCapture object: {e}")
    cv2.destroyAllWindows()

update(i, cap, stream)

स्ट्रीम पढ़ें i डेमॉन थ्रेड में फ्रेम।

में स्रोत कोड ultralytics/data/loaders.py
def update(self, i, cap, stream):
    """Read stream `i` frames in daemon thread."""
    n, f = 0, self.frames[i]  # frame number, frame array
    while self.running and cap.isOpened() and n < (f - 1):
        if len(self.imgs[i]) < 30:  # keep a <=30-image buffer
            n += 1
            cap.grab()  # .read() = .grab() followed by .retrieve()
            if n % self.vid_stride == 0:
                success, im = cap.retrieve()
                if not success:
                    im = np.zeros(self.shape[i], dtype=np.uint8)
                    LOGGER.warning("WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.")
                    cap.open(stream)  # re-open stream if signal was lost
                if self.buffer:
                    self.imgs[i].append(im)
                else:
                    self.imgs[i] = [im]
        else:
            time.sleep(0.01)  # wait until the buffer is empty



ultralytics.data.loaders.LoadScreenshots

YOLOv8 स्क्रीनशॉट DataLoader.

यह वर्ग प्रसंस्करण के लिए स्क्रीनशॉट छवियों की लोडिंग का प्रबंधन करता है YOLOv8. के साथ प्रयोग के लिए उपयुक्त yolo predict source=screen.

विशेषताएँ:

नाम प्रकार या क़िस्‍म
source str

स्रोत इनपुट इंगित करता है कि किस स्क्रीन को कैप्चर करना है।

screen int

कैप्चर करने के लिए स्क्रीन नंबर।

left int

स्क्रीन कैप्चर क्षेत्र के लिए बाएं निर्देश।

top int

स्क्रीन कैप्चर क्षेत्र के लिए शीर्ष समन्वय।

width int

स्क्रीन कैप्चर क्षेत्र की चौड़ाई।

height int

स्क्रीन कैप्चर क्षेत्र की ऊंचाई।

mode str

वास्तविक समय कैप्चर का संकेत देने वाले 'स्ट्रीम' पर सेट करें।

frame int

कैप्चर किए गए फ्रेम के लिए काउंटर।

sct mss

स्क्रीन कैप्चर ऑब्जेक्ट से mss पुस्तकालय।

bs int

बैच आकार, 1 पर सेट करें।

monitor dict

कॉन्फ़िगरेशन विवरण की निगरानी करें।

विधियाँ:

नाम या क़िस्‍म
__iter__

एक इटरेटर ऑब्जेक्ट लौटाता है।

__next__

अगले स्क्रीनशॉट को कैप्चर करता है और उसे लौटाता है।

में स्रोत कोड ultralytics/data/loaders.py
class LoadScreenshots:
    """
    YOLOv8 screenshot dataloader.

    This class manages the loading of screenshot images for processing with YOLOv8.
    Suitable for use with `yolo predict source=screen`.

    Attributes:
        source (str): The source input indicating which screen to capture.
        screen (int): The screen number to capture.
        left (int): The left coordinate for screen capture area.
        top (int): The top coordinate for screen capture area.
        width (int): The width of the screen capture area.
        height (int): The height of the screen capture area.
        mode (str): Set to 'stream' indicating real-time capture.
        frame (int): Counter for captured frames.
        sct (mss.mss): Screen capture object from `mss` library.
        bs (int): Batch size, set to 1.
        monitor (dict): Monitor configuration details.

    Methods:
        __iter__: Returns an iterator object.
        __next__: Captures the next screenshot and returns it.
    """

    def __init__(self, source):
        """Source = [screen_number left top width height] (pixels)."""
        check_requirements("mss")
        import mss  # noqa

        source, *params = source.split()
        self.screen, left, top, width, height = 0, None, None, None, None  # default to full screen 0
        if len(params) == 1:
            self.screen = int(params[0])
        elif len(params) == 4:
            left, top, width, height = (int(x) for x in params)
        elif len(params) == 5:
            self.screen, left, top, width, height = (int(x) for x in params)
        self.mode = "stream"
        self.frame = 0
        self.sct = mss.mss()
        self.bs = 1
        self.fps = 30

        # Parse monitor shape
        monitor = self.sct.monitors[self.screen]
        self.top = monitor["top"] if top is None else (monitor["top"] + top)
        self.left = monitor["left"] if left is None else (monitor["left"] + left)
        self.width = width or monitor["width"]
        self.height = height or monitor["height"]
        self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}

    def __iter__(self):
        """Returns an iterator of the object."""
        return self

    def __next__(self):
        """mss screen capture: get raw pixels from the screen as np array."""
        im0 = np.asarray(self.sct.grab(self.monitor))[:, :, :3]  # BGRA to BGR
        s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "

        self.frame += 1
        return [str(self.screen)], [im0], [s]  # screen, img, string

__init__(source)

स्रोत = [screen_number बाईं शीर्ष चौड़ाई ऊंचाई] (पिक्सेल)।

में स्रोत कोड ultralytics/data/loaders.py
def __init__(self, source):
    """Source = [screen_number left top width height] (pixels)."""
    check_requirements("mss")
    import mss  # noqa

    source, *params = source.split()
    self.screen, left, top, width, height = 0, None, None, None, None  # default to full screen 0
    if len(params) == 1:
        self.screen = int(params[0])
    elif len(params) == 4:
        left, top, width, height = (int(x) for x in params)
    elif len(params) == 5:
        self.screen, left, top, width, height = (int(x) for x in params)
    self.mode = "stream"
    self.frame = 0
    self.sct = mss.mss()
    self.bs = 1
    self.fps = 30

    # Parse monitor shape
    monitor = self.sct.monitors[self.screen]
    self.top = monitor["top"] if top is None else (monitor["top"] + top)
    self.left = monitor["left"] if left is None else (monitor["left"] + left)
    self.width = width or monitor["width"]
    self.height = height or monitor["height"]
    self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}

__iter__()

ऑब्जेक्ट का एक इटरेटर देता है।

में स्रोत कोड ultralytics/data/loaders.py
def __iter__(self):
    """Returns an iterator of the object."""
    return self

__next__()

एमएसएस स्क्रीन कैप्चर: एनपी सरणी के रूप में स्क्रीन से कच्चे पिक्सेल प्राप्त करें।

में स्रोत कोड ultralytics/data/loaders.py
def __next__(self):
    """mss screen capture: get raw pixels from the screen as np array."""
    im0 = np.asarray(self.sct.grab(self.monitor))[:, :, :3]  # BGRA to BGR
    s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "

    self.frame += 1
    return [str(self.screen)], [im0], [s]  # screen, img, string



ultralytics.data.loaders.LoadImagesAndVideos

YOLOv8 छवि/वीडियो डेटालोडर।

यह वर्ग छवि और वीडियो डेटा के लोडिंग और पूर्व-प्रसंस्करण का प्रबंधन करता है YOLOv8. यह से लोडिंग का समर्थन करता है एकल छवि फ़ाइलों, वीडियो फ़ाइलों और छवि और वीडियो पथों की सूचियों सहित विभिन्न प्रारूप।

विशेषताएँ:

नाम प्रकार या क़िस्‍म
files list

छवि और वीडियो फ़ाइल पथों की सूची।

nf int

फ़ाइलों की कुल संख्या (चित्र और वीडियो)।

video_flag list

यह इंगित करने वाले फ़्लैग कि फ़ाइल वीडियो है (सत्य) या छवि (गलत).

mode str

वर्तमान मोड, 'छवि' या 'वीडियो'।

vid_stride int

वीडियो फ्रेम-दर के लिए स्ट्राइड, डिफ़ॉल्ट 1.

bs int

बैच आकार, इस वर्ग के लिए 1 पर सेट करें।

cap VideoCapture

OpenCV के लिए वीडियो कैप्चर ऑब्जेक्ट।

frame int

वीडियो के लिए फ्रेम काउंटर।

frames int

वीडियो में फ़्रेम की कुल संख्या.

count int

पुनरावृत्ति के लिए काउंटर, 0 के दौरान प्रारंभ किया गया __iter__().

विधियाँ:

नाम या क़िस्‍म
_new_video

एक नया cv2 बनाएँ. किसी दिए गए वीडियो पथ के लिए VideoCapture ऑब्जेक्ट।

में स्रोत कोड ultralytics/data/loaders.py
class LoadImagesAndVideos:
    """
    YOLOv8 image/video dataloader.

    This class manages the loading and pre-processing of image and video data for YOLOv8. It supports loading from
    various formats, including single image files, video files, and lists of image and video paths.

    Attributes:
        files (list): List of image and video file paths.
        nf (int): Total number of files (images and videos).
        video_flag (list): Flags indicating whether a file is a video (True) or an image (False).
        mode (str): Current mode, 'image' or 'video'.
        vid_stride (int): Stride for video frame-rate, defaults to 1.
        bs (int): Batch size, set to 1 for this class.
        cap (cv2.VideoCapture): Video capture object for OpenCV.
        frame (int): Frame counter for video.
        frames (int): Total number of frames in the video.
        count (int): Counter for iteration, initialized at 0 during `__iter__()`.

    Methods:
        _new_video(path): Create a new cv2.VideoCapture object for a given video path.
    """

    def __init__(self, path, batch=1, vid_stride=1):
        """Initialize the Dataloader and raise FileNotFoundError if file not found."""
        parent = None
        if isinstance(path, str) and Path(path).suffix == ".txt":  # *.txt file with img/vid/dir on each line
            parent = Path(path).parent
            path = Path(path).read_text().splitlines()  # list of sources
        files = []
        for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
            a = str(Path(p).absolute())  # do not use .resolve() https://github.com/ultralytics/ultralytics/issues/2912
            if "*" in a:
                files.extend(sorted(glob.glob(a, recursive=True)))  # glob
            elif os.path.isdir(a):
                files.extend(sorted(glob.glob(os.path.join(a, "*.*"))))  # dir
            elif os.path.isfile(a):
                files.append(a)  # files (absolute or relative to CWD)
            elif parent and (parent / p).is_file():
                files.append(str((parent / p).absolute()))  # files (relative to *.txt file parent)
            else:
                raise FileNotFoundError(f"{p} does not exist")

        # Define files as images or videos
        images, videos = [], []
        for f in files:
            suffix = f.split(".")[-1].lower()  # Get file extension without the dot and lowercase
            if suffix in IMG_FORMATS:
                images.append(f)
            elif suffix in VID_FORMATS:
                videos.append(f)
        ni, nv = len(images), len(videos)

        self.files = images + videos
        self.nf = ni + nv  # number of files
        self.ni = ni  # number of images
        self.video_flag = [False] * ni + [True] * nv
        self.mode = "image"
        self.vid_stride = vid_stride  # video frame-rate stride
        self.bs = batch
        if any(videos):
            self._new_video(videos[0])  # new video
        else:
            self.cap = None
        if self.nf == 0:
            raise FileNotFoundError(f"No images or videos found in {p}. {FORMATS_HELP_MSG}")

    def __iter__(self):
        """Returns an iterator object for VideoStream or ImageFolder."""
        self.count = 0
        return self

    def __next__(self):
        """Returns the next batch of images or video frames along with their paths and metadata."""
        paths, imgs, info = [], [], []
        while len(imgs) < self.bs:
            if self.count >= self.nf:  # end of file list
                if imgs:
                    return paths, imgs, info  # return last partial batch
                else:
                    raise StopIteration

            path = self.files[self.count]
            if self.video_flag[self.count]:
                self.mode = "video"
                if not self.cap or not self.cap.isOpened():
                    self._new_video(path)

                for _ in range(self.vid_stride):
                    success = self.cap.grab()
                    if not success:
                        break  # end of video or failure

                if success:
                    success, im0 = self.cap.retrieve()
                    if success:
                        self.frame += 1
                        paths.append(path)
                        imgs.append(im0)
                        info.append(f"video {self.count + 1}/{self.nf} (frame {self.frame}/{self.frames}) {path}: ")
                        if self.frame == self.frames:  # end of video
                            self.count += 1
                            self.cap.release()
                else:
                    # Move to the next file if the current video ended or failed to open
                    self.count += 1
                    if self.cap:
                        self.cap.release()
                    if self.count < self.nf:
                        self._new_video(self.files[self.count])
            else:
                self.mode = "image"
                im0 = cv2.imread(path)  # BGR
                if im0 is None:
                    raise FileNotFoundError(f"Image Not Found {path}")
                paths.append(path)
                imgs.append(im0)
                info.append(f"image {self.count + 1}/{self.nf} {path}: ")
                self.count += 1  # move to the next file
                if self.count >= self.ni:  # end of image list
                    break

        return paths, imgs, info

    def _new_video(self, path):
        """Creates a new video capture object for the given path."""
        self.frame = 0
        self.cap = cv2.VideoCapture(path)
        self.fps = int(self.cap.get(cv2.CAP_PROP_FPS))
        if not self.cap.isOpened():
            raise FileNotFoundError(f"Failed to open video {path}")
        self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)

    def __len__(self):
        """Returns the number of batches in the object."""
        return math.ceil(self.nf / self.bs)  # number of files

__init__(path, batch=1, vid_stride=1)

Dataloader को इनिशियलाइज़ करें और फ़ाइल नहीं मिलने पर FileNotFoundError बढ़ाएँ।

में स्रोत कोड ultralytics/data/loaders.py
def __init__(self, path, batch=1, vid_stride=1):
    """Initialize the Dataloader and raise FileNotFoundError if file not found."""
    parent = None
    if isinstance(path, str) and Path(path).suffix == ".txt":  # *.txt file with img/vid/dir on each line
        parent = Path(path).parent
        path = Path(path).read_text().splitlines()  # list of sources
    files = []
    for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
        a = str(Path(p).absolute())  # do not use .resolve() https://github.com/ultralytics/ultralytics/issues/2912
        if "*" in a:
            files.extend(sorted(glob.glob(a, recursive=True)))  # glob
        elif os.path.isdir(a):
            files.extend(sorted(glob.glob(os.path.join(a, "*.*"))))  # dir
        elif os.path.isfile(a):
            files.append(a)  # files (absolute or relative to CWD)
        elif parent and (parent / p).is_file():
            files.append(str((parent / p).absolute()))  # files (relative to *.txt file parent)
        else:
            raise FileNotFoundError(f"{p} does not exist")

    # Define files as images or videos
    images, videos = [], []
    for f in files:
        suffix = f.split(".")[-1].lower()  # Get file extension without the dot and lowercase
        if suffix in IMG_FORMATS:
            images.append(f)
        elif suffix in VID_FORMATS:
            videos.append(f)
    ni, nv = len(images), len(videos)

    self.files = images + videos
    self.nf = ni + nv  # number of files
    self.ni = ni  # number of images
    self.video_flag = [False] * ni + [True] * nv
    self.mode = "image"
    self.vid_stride = vid_stride  # video frame-rate stride
    self.bs = batch
    if any(videos):
        self._new_video(videos[0])  # new video
    else:
        self.cap = None
    if self.nf == 0:
        raise FileNotFoundError(f"No images or videos found in {p}. {FORMATS_HELP_MSG}")

__iter__()

VideoStream या ImageFolder के लिए एक इटरेटर ऑब्जेक्ट लौटाता है।

में स्रोत कोड ultralytics/data/loaders.py
def __iter__(self):
    """Returns an iterator object for VideoStream or ImageFolder."""
    self.count = 0
    return self

__len__()

ऑब्जेक्ट में बैचों की संख्या देता है.

में स्रोत कोड ultralytics/data/loaders.py
def __len__(self):
    """Returns the number of batches in the object."""
    return math.ceil(self.nf / self.bs)  # number of files

__next__()

छवियों या वीडियो फ़्रेम के अगले बैच को उनके पथ और मेटाडेटा के साथ लौटाता है।

में स्रोत कोड ultralytics/data/loaders.py
def __next__(self):
    """Returns the next batch of images or video frames along with their paths and metadata."""
    paths, imgs, info = [], [], []
    while len(imgs) < self.bs:
        if self.count >= self.nf:  # end of file list
            if imgs:
                return paths, imgs, info  # return last partial batch
            else:
                raise StopIteration

        path = self.files[self.count]
        if self.video_flag[self.count]:
            self.mode = "video"
            if not self.cap or not self.cap.isOpened():
                self._new_video(path)

            for _ in range(self.vid_stride):
                success = self.cap.grab()
                if not success:
                    break  # end of video or failure

            if success:
                success, im0 = self.cap.retrieve()
                if success:
                    self.frame += 1
                    paths.append(path)
                    imgs.append(im0)
                    info.append(f"video {self.count + 1}/{self.nf} (frame {self.frame}/{self.frames}) {path}: ")
                    if self.frame == self.frames:  # end of video
                        self.count += 1
                        self.cap.release()
            else:
                # Move to the next file if the current video ended or failed to open
                self.count += 1
                if self.cap:
                    self.cap.release()
                if self.count < self.nf:
                    self._new_video(self.files[self.count])
        else:
            self.mode = "image"
            im0 = cv2.imread(path)  # BGR
            if im0 is None:
                raise FileNotFoundError(f"Image Not Found {path}")
            paths.append(path)
            imgs.append(im0)
            info.append(f"image {self.count + 1}/{self.nf} {path}: ")
            self.count += 1  # move to the next file
            if self.count >= self.ni:  # end of image list
                break

    return paths, imgs, info



ultralytics.data.loaders.LoadPilAndNumpy

बैच प्रसंस्करण के लिए पीआईएल और न्यूम्पी सरणियों से छवियों को लोड करें।

इस वर्ग को पीआईएल और न्यूम्पी दोनों प्रारूपों से छवि डेटा की लोडिंग और पूर्व-प्रसंस्करण का प्रबंधन करने के लिए डिज़ाइन किया गया है। यह सुनिश्चित करने के लिए बुनियादी सत्यापन और प्रारूप रूपांतरण करता है कि छवियां आवश्यक प्रारूप में हैं डाउनस्ट्रीम प्रसंस्करण।

विशेषताएँ:

नाम प्रकार या क़िस्‍म
paths list

छवि पथ या स्वतः उत्पन्न फ़ाइल नामों की सूची।

im0 list

Numpy सरणियों के रूप में संग्रहीत छवियों की सूची।

mode str

संसाधित किए जा रहे डेटा का प्रकार, 'छवि' के लिए डिफ़ॉल्ट।

bs int

बैच आकार, की लंबाई के बराबर im0.

विधियाँ:

नाम या क़िस्‍म
_single_check

किसी एकल छवि को Numpy सरणी में मान्य और स्वरूपित करें.

में स्रोत कोड ultralytics/data/loaders.py
class LoadPilAndNumpy:
    """
    Load images from PIL and Numpy arrays for batch processing.

    This class is designed to manage loading and pre-processing of image data from both PIL and Numpy formats.
    It performs basic validation and format conversion to ensure that the images are in the required format for
    downstream processing.

    Attributes:
        paths (list): List of image paths or autogenerated filenames.
        im0 (list): List of images stored as Numpy arrays.
        mode (str): Type of data being processed, defaults to 'image'.
        bs (int): Batch size, equivalent to the length of `im0`.

    Methods:
        _single_check(im): Validate and format a single image to a Numpy array.
    """

    def __init__(self, im0):
        """Initialize PIL and Numpy Dataloader."""
        if not isinstance(im0, list):
            im0 = [im0]
        self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)]
        self.im0 = [self._single_check(im) for im in im0]
        self.mode = "image"
        self.bs = len(self.im0)

    @staticmethod
    def _single_check(im):
        """Validate and format an image to numpy array."""
        assert isinstance(im, (Image.Image, np.ndarray)), f"Expected PIL/np.ndarray image type, but got {type(im)}"
        if isinstance(im, Image.Image):
            if im.mode != "RGB":
                im = im.convert("RGB")
            im = np.asarray(im)[:, :, ::-1]
            im = np.ascontiguousarray(im)  # contiguous
        return im

    def __len__(self):
        """Returns the length of the 'im0' attribute."""
        return len(self.im0)

    def __next__(self):
        """Returns batch paths, images, processed images, None, ''."""
        if self.count == 1:  # loop only once as it's batch inference
            raise StopIteration
        self.count += 1
        return self.paths, self.im0, [""] * self.bs

    def __iter__(self):
        """Enables iteration for class LoadPilAndNumpy."""
        self.count = 0
        return self

__init__(im0)

PIL और Numpy Dataloader को इनिशियलाइज़ करें।

में स्रोत कोड ultralytics/data/loaders.py
def __init__(self, im0):
    """Initialize PIL and Numpy Dataloader."""
    if not isinstance(im0, list):
        im0 = [im0]
    self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)]
    self.im0 = [self._single_check(im) for im in im0]
    self.mode = "image"
    self.bs = len(self.im0)

__iter__()

कक्षा LoadPilAndNumpy के लिए पुनरावृत्ति सक्षम करता है।

में स्रोत कोड ultralytics/data/loaders.py
def __iter__(self):
    """Enables iteration for class LoadPilAndNumpy."""
    self.count = 0
    return self

__len__()

'im0' विशेषता की लंबाई देता है.

में स्रोत कोड ultralytics/data/loaders.py
def __len__(self):
    """Returns the length of the 'im0' attribute."""
    return len(self.im0)

__next__()

बैच पथ, चित्र, संसाधित छवियां, कोई नहीं, ''लौटाता है।

में स्रोत कोड ultralytics/data/loaders.py
def __next__(self):
    """Returns batch paths, images, processed images, None, ''."""
    if self.count == 1:  # loop only once as it's batch inference
        raise StopIteration
    self.count += 1
    return self.paths, self.im0, [""] * self.bs



ultralytics.data.loaders.LoadTensor

से चित्र लोड करें torch.Tensor डाटा।

यह वर्ग छवि डेटा के लोडिंग और पूर्व-प्रसंस्करण का प्रबंधन करता है PyTorch आगे की प्रक्रिया के लिए टेंसर।

विशेषताएँ:

नाम प्रकार या क़िस्‍म
im0 Tensor

इनपुट tensor जिसमें छवि (छवियां) शामिल हैं।

bs int

बैच आकार, के आकार से अनुमान लगाया गया im0.

mode str

वर्तमान मोड, 'छवि' पर सेट करें।

paths list

छवि पथ या फ़ाइल नामों की सूची।

count int

पुनरावृत्ति के लिए काउंटर, 0 के दौरान प्रारंभ किया गया __iter__().

विधियाँ:

नाम या क़िस्‍म
_single_check

इनपुट को मान्य और संभवतः संशोधित करें tensor.

में स्रोत कोड ultralytics/data/loaders.py
class LoadTensor:
    """
    Load images from torch.Tensor data.

    This class manages the loading and pre-processing of image data from PyTorch tensors for further processing.

    Attributes:
        im0 (torch.Tensor): The input tensor containing the image(s).
        bs (int): Batch size, inferred from the shape of `im0`.
        mode (str): Current mode, set to 'image'.
        paths (list): List of image paths or filenames.
        count (int): Counter for iteration, initialized at 0 during `__iter__()`.

    Methods:
        _single_check(im, stride): Validate and possibly modify the input tensor.
    """

    def __init__(self, im0) -> None:
        """Initialize Tensor Dataloader."""
        self.im0 = self._single_check(im0)
        self.bs = self.im0.shape[0]
        self.mode = "image"
        self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)]

    @staticmethod
    def _single_check(im, stride=32):
        """Validate and format an image to torch.Tensor."""
        s = (
            f"WARNING ⚠️ torch.Tensor inputs should be BCHW i.e. shape(1, 3, 640, 640) "
            f"divisible by stride {stride}. Input shape{tuple(im.shape)} is incompatible."
        )
        if len(im.shape) != 4:
            if len(im.shape) != 3:
                raise ValueError(s)
            LOGGER.warning(s)
            im = im.unsqueeze(0)
        if im.shape[2] % stride or im.shape[3] % stride:
            raise ValueError(s)
        if im.max() > 1.0 + torch.finfo(im.dtype).eps:  # torch.float32 eps is 1.2e-07
            LOGGER.warning(
                f"WARNING ⚠️ torch.Tensor inputs should be normalized 0.0-1.0 but max value is {im.max()}. "
                f"Dividing input by 255."
            )
            im = im.float() / 255.0

        return im

    def __iter__(self):
        """Returns an iterator object."""
        self.count = 0
        return self

    def __next__(self):
        """Return next item in the iterator."""
        if self.count == 1:
            raise StopIteration
        self.count += 1
        return self.paths, self.im0, [""] * self.bs

    def __len__(self):
        """Returns the batch size."""
        return self.bs

__init__(im0)

प्रारंभ Tensor डेटालोडर।

में स्रोत कोड ultralytics/data/loaders.py
def __init__(self, im0) -> None:
    """Initialize Tensor Dataloader."""
    self.im0 = self._single_check(im0)
    self.bs = self.im0.shape[0]
    self.mode = "image"
    self.paths = [getattr(im, "filename", f"image{i}.jpg") for i, im in enumerate(im0)]

__iter__()

एक इटरेटर ऑब्जेक्ट लौटाता है।

में स्रोत कोड ultralytics/data/loaders.py
def __iter__(self):
    """Returns an iterator object."""
    self.count = 0
    return self

__len__()

बैच आकार लौटाता है।

में स्रोत कोड ultralytics/data/loaders.py
def __len__(self):
    """Returns the batch size."""
    return self.bs

__next__()

इटरेटर में अगला आइटम लौटाएं।

में स्रोत कोड ultralytics/data/loaders.py
def __next__(self):
    """Return next item in the iterator."""
    if self.count == 1:
        raise StopIteration
    self.count += 1
    return self.paths, self.im0, [""] * self.bs



ultralytics.data.loaders.autocast_list(source)

विभिन्न प्रकार के स्रोतों की सूची को numpy सरणियों या PIL छवियों की सूची में मर्ज करता है।

में स्रोत कोड ultralytics/data/loaders.py
def autocast_list(source):
    """Merges a list of source of different types into a list of numpy arrays or PIL images."""
    files = []
    for im in source:
        if isinstance(im, (str, Path)):  # filename or uri
            files.append(Image.open(requests.get(im, stream=True).raw if str(im).startswith("http") else im))
        elif isinstance(im, (Image.Image, np.ndarray)):  # PIL or np Image
            files.append(im)
        else:
            raise TypeError(
                f"type {type(im).__name__} is not a supported Ultralytics prediction source type. \n"
                f"See https://docs.ultralytics.com/modes/predict for supported source types."
            )

    return files



ultralytics.data.loaders.get_best_youtube_url(url, method='pytube')

किसी दिए गए YouTube वीडियो से सर्वोत्तम गुणवत्ता वाले MP4 वीडियो स्ट्रीम का URL प्राप्त करता है।

यह फ़ंक्शन YouTube से वीडियो जानकारी निकालने के लिए निर्दिष्ट विधि का उपयोग करता है। यह निम्नलिखित विधियों का समर्थन करता है: - "pytube": वीडियो स्ट्रीम लाने के लिए pytube लाइब्रेरी का उपयोग करता है। - "pafy": वीडियो स्ट्रीम लाने के लिए Pafy लाइब्रेरी का उपयोग करता है। - "yt-dlp": वीडियो स्ट्रीम लाने के लिए yt-dlp लाइब्रेरी का इस्तेमाल करता है.

फ़ंक्शन तब उच्चतम गुणवत्ता वाले MP4 प्रारूप को ढूंढता है जिसमें एक वीडियो कोडेक होता है लेकिन कोई ऑडियो कोडेक नहीं होता है, और इस वीडियो स्ट्रीम का यूआरएल।

पैरामीटर:

नाम प्रकार या क़िस्‍म चूक
url str

YouTube वीडियो का यूआरएल.

आवश्यक
method str

वीडियो जानकारी निकालने के लिए उपयोग करने की विधि। डिफ़ॉल्ट "pytube" है। अन्य विकल्प "पाफी" हैं और "वाईटी-डीएलपी"।

'pytube'

देता:

प्रकार या क़िस्‍म
str

सर्वोत्तम गुणवत्ता वाले MP4 वीडियो स्ट्रीम का URL, या कोई नहीं यदि कोई उपयुक्त स्ट्रीम नहीं मिलती है।

में स्रोत कोड ultralytics/data/loaders.py
def get_best_youtube_url(url, method="pytube"):
    """
    Retrieves the URL of the best quality MP4 video stream from a given YouTube video.

    This function uses the specified method to extract the video info from YouTube. It supports the following methods:
    - "pytube": Uses the pytube library to fetch the video streams.
    - "pafy": Uses the pafy library to fetch the video streams.
    - "yt-dlp": Uses the yt-dlp library to fetch the video streams.

    The function then finds the highest quality MP4 format that has a video codec but no audio codec, and returns the
    URL of this video stream.

    Args:
        url (str): The URL of the YouTube video.
        method (str): The method to use for extracting video info. Default is "pytube". Other options are "pafy" and
            "yt-dlp".

    Returns:
        (str): The URL of the best quality MP4 video stream, or None if no suitable stream is found.
    """
    if method == "pytube":
        check_requirements("pytube")
        from pytube import YouTube

        streams = YouTube(url).streams.filter(file_extension="mp4", only_video=True)
        streams = sorted(streams, key=lambda s: s.resolution, reverse=True)  # sort streams by resolution
        for stream in streams:
            if stream.resolution and int(stream.resolution[:-1]) >= 1080:  # check if resolution is at least 1080p
                return stream.url

    elif method == "pafy":
        check_requirements(("pafy", "youtube_dl==2020.12.2"))
        import pafy  # noqa

        return pafy.new(url).getbestvideo(preftype="mp4").url

    elif method == "yt-dlp":
        check_requirements("yt-dlp")
        import yt_dlp

        with yt_dlp.YoutubeDL({"quiet": True}) as ydl:
            info_dict = ydl.extract_info(url, download=False)  # extract info
        for f in reversed(info_dict.get("formats", [])):  # reversed because best is usually last
            # Find a format with video codec, no audio, *.mp4 extension at least 1920x1080 size
            good_size = (f.get("width") or 0) >= 1920 or (f.get("height") or 0) >= 1080
            if good_size and f["vcodec"] != "none" and f["acodec"] == "none" and f["ext"] == "mp4":
                return f.get("url")





Created 2023-11-12, Updated 2024-06-02
Authors: glenn-jocher (6), Burhan-Q (1), Laughing-q (1)