सामग्री पर जाएं

के लिए संदर्भ ultralytics/solutions/heatmap.py

नोट

यह फ़ाइल यहाँ उपलब्ध है https://github.com/ultralytics/ultralytics/बूँद/मुख्य/ultralytics/समाधान/heatmap.py का उपयोग करें। यदि आप कोई समस्या देखते हैं तो कृपया पुल अनुरोध का योगदान करके इसे ठीक करने में मदद करें 🛠️। 🙏 धन्यवाद !



ultralytics.solutions.heatmap.Heatmap

उनके ट्रैक के आधार पर रीयल-टाइम वीडियो स्ट्रीम में हीटमैप बनाने के लिए एक वर्ग।

में स्रोत कोड ultralytics/solutions/heatmap.py
class Heatmap:
    """A class to draw heatmaps in real-time video stream based on their tracks."""

    def __init__(
        self,
        classes_names,
        imw=0,
        imh=0,
        colormap=cv2.COLORMAP_JET,
        heatmap_alpha=0.5,
        view_img=False,
        view_in_counts=True,
        view_out_counts=True,
        count_reg_pts=None,
        count_txt_color=(0, 0, 0),
        count_bg_color=(255, 255, 255),
        count_reg_color=(255, 0, 255),
        region_thickness=5,
        line_dist_thresh=15,
        line_thickness=2,
        decay_factor=0.99,
        shape="circle",
    ):
        """Initializes the heatmap class with default values for Visual, Image, track, count and heatmap parameters."""

        # Visual information
        self.annotator = None
        self.view_img = view_img
        self.shape = shape

        self.initialized = False
        self.names = classes_names  # Classes names

        # Image information
        self.imw = imw
        self.imh = imh
        self.im0 = None
        self.tf = line_thickness
        self.view_in_counts = view_in_counts
        self.view_out_counts = view_out_counts

        # Heatmap colormap and heatmap np array
        self.colormap = colormap
        self.heatmap = None
        self.heatmap_alpha = heatmap_alpha

        # Predict/track information
        self.boxes = None
        self.track_ids = None
        self.clss = None
        self.track_history = defaultdict(list)

        # Region & Line Information
        self.counting_region = None
        self.line_dist_thresh = line_dist_thresh
        self.region_thickness = region_thickness
        self.region_color = count_reg_color

        # Object Counting Information
        self.in_counts = 0
        self.out_counts = 0
        self.count_ids = []
        self.class_wise_count = {}
        self.count_txt_color = count_txt_color
        self.count_bg_color = count_bg_color
        self.cls_txtdisplay_gap = 50

        # Decay factor
        self.decay_factor = decay_factor

        # Check if environment supports imshow
        self.env_check = check_imshow(warn=True)

        # Region and line selection
        self.count_reg_pts = count_reg_pts
        print(self.count_reg_pts)
        if self.count_reg_pts is not None:
            if len(self.count_reg_pts) == 2:
                print("Line Counter Initiated.")
                self.counting_region = LineString(self.count_reg_pts)
            elif len(self.count_reg_pts) >= 3:
                print("Polygon Counter Initiated.")
                self.counting_region = Polygon(self.count_reg_pts)
            else:
                print("Invalid Region points provided, region_points must be 2 for lines or >= 3 for polygons.")
                print("Using Line Counter Now")
                self.counting_region = LineString(self.count_reg_pts)

        # Shape of heatmap, if not selected
        if self.shape not in {"circle", "rect"}:
            print("Unknown shape value provided, 'circle' & 'rect' supported")
            print("Using Circular shape now")
            self.shape = "circle"

    def extract_results(self, tracks, _intialized=False):
        """
        Extracts results from the provided data.

        Args:
            tracks (list): List of tracks obtained from the object tracking process.
        """
        self.boxes = tracks[0].boxes.xyxy.cpu()
        self.clss = tracks[0].boxes.cls.cpu().tolist()
        self.track_ids = tracks[0].boxes.id.int().cpu().tolist()

    def generate_heatmap(self, im0, tracks):
        """
        Generate heatmap based on tracking data.

        Args:
            im0 (nd array): Image
            tracks (list): List of tracks obtained from the object tracking process.
        """
        self.im0 = im0

        # Initialize heatmap only once
        if not self.initialized:
            self.heatmap = np.zeros((int(self.im0.shape[0]), int(self.im0.shape[1])), dtype=np.float32)
            self.initialized = True

        self.heatmap *= self.decay_factor  # decay factor

        self.extract_results(tracks)
        self.annotator = Annotator(self.im0, self.tf, None)

        if self.track_ids is not None:
            # Draw counting region
            if self.count_reg_pts is not None:
                self.annotator.draw_region(
                    reg_pts=self.count_reg_pts, color=self.region_color, thickness=self.region_thickness
                )

            for box, cls, track_id in zip(self.boxes, self.clss, self.track_ids):
                # Store class info
                if self.names[cls] not in self.class_wise_count:
                    self.class_wise_count[self.names[cls]] = {"IN": 0, "OUT": 0}

                if self.shape == "circle":
                    center = (int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2))
                    radius = min(int(box[2]) - int(box[0]), int(box[3]) - int(box[1])) // 2

                    y, x = np.ogrid[0 : self.heatmap.shape[0], 0 : self.heatmap.shape[1]]
                    mask = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= radius**2

                    self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += (
                        2 * mask[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])]
                    )

                else:
                    self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += 2

                # Store tracking hist
                track_line = self.track_history[track_id]
                track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)))
                if len(track_line) > 30:
                    track_line.pop(0)

                prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None

                if self.count_reg_pts is not None:
                    # Count objects in any polygon
                    if len(self.count_reg_pts) >= 3:
                        is_inside = self.counting_region.contains(Point(track_line[-1]))

                        if prev_position is not None and is_inside and track_id not in self.count_ids:
                            self.count_ids.append(track_id)

                            if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
                                self.in_counts += 1
                                self.class_wise_count[self.names[cls]]["IN"] += 1
                            else:
                                self.out_counts += 1
                                self.class_wise_count[self.names[cls]]["OUT"] += 1

                    # Count objects using line
                    elif len(self.count_reg_pts) == 2:
                        if prev_position is not None and track_id not in self.count_ids:
                            distance = Point(track_line[-1]).distance(self.counting_region)
                            if distance < self.line_dist_thresh and track_id not in self.count_ids:
                                self.count_ids.append(track_id)

                                if (box[0] - prev_position[0]) * (
                                    self.counting_region.centroid.x - prev_position[0]
                                ) > 0:
                                    self.in_counts += 1
                                    self.class_wise_count[self.names[cls]]["IN"] += 1
                                else:
                                    self.out_counts += 1
                                    self.class_wise_count[self.names[cls]]["OUT"] += 1

        else:
            for box, cls in zip(self.boxes, self.clss):
                if self.shape == "circle":
                    center = (int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2))
                    radius = min(int(box[2]) - int(box[0]), int(box[3]) - int(box[1])) // 2

                    y, x = np.ogrid[0 : self.heatmap.shape[0], 0 : self.heatmap.shape[1]]
                    mask = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= radius**2

                    self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += (
                        2 * mask[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])]
                    )

                else:
                    self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += 2

        if self.count_reg_pts is not None:
            labels_dict = {}

            for key, value in self.class_wise_count.items():
                if value["IN"] != 0 or value["OUT"] != 0:
                    if not self.view_in_counts and not self.view_out_counts:
                        continue
                    elif not self.view_in_counts:
                        labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}"
                    elif not self.view_out_counts:
                        labels_dict[str.capitalize(key)] = f"IN {value['IN']}"
                    else:
                        labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}"

            if labels_dict is not None:
                self.annotator.display_analytics(self.im0, labels_dict, self.count_txt_color, self.count_bg_color, 10)

        # Normalize, apply colormap to heatmap and combine with original image
        heatmap_normalized = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX)
        heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), self.colormap)
        self.im0 = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0)

        if self.env_check and self.view_img:
            self.display_frames()

        return self.im0

    def display_frames(self):
        """Display frame."""
        cv2.imshow("Ultralytics Heatmap", self.im0)

        if cv2.waitKey(1) & 0xFF == ord("q"):
            return

__init__(classes_names, imw=0, imh=0, colormap=cv2.COLORMAP_JET, heatmap_alpha=0.5, view_img=False, view_in_counts=True, view_out_counts=True, count_reg_pts=None, count_txt_color=(0, 0, 0), count_bg_color=(255, 255, 255), count_reg_color=(255, 0, 255), region_thickness=5, line_dist_thresh=15, line_thickness=2, decay_factor=0.99, shape='circle')

दृश्य, छवि, ट्रैक, गिनती और हीटमैप मापदंडों के लिए डिफ़ॉल्ट मानों के साथ हीटमैप वर्ग को प्रारंभ करता है।

में स्रोत कोड ultralytics/solutions/heatmap.py
def __init__(
    self,
    classes_names,
    imw=0,
    imh=0,
    colormap=cv2.COLORMAP_JET,
    heatmap_alpha=0.5,
    view_img=False,
    view_in_counts=True,
    view_out_counts=True,
    count_reg_pts=None,
    count_txt_color=(0, 0, 0),
    count_bg_color=(255, 255, 255),
    count_reg_color=(255, 0, 255),
    region_thickness=5,
    line_dist_thresh=15,
    line_thickness=2,
    decay_factor=0.99,
    shape="circle",
):
    """Initializes the heatmap class with default values for Visual, Image, track, count and heatmap parameters."""

    # Visual information
    self.annotator = None
    self.view_img = view_img
    self.shape = shape

    self.initialized = False
    self.names = classes_names  # Classes names

    # Image information
    self.imw = imw
    self.imh = imh
    self.im0 = None
    self.tf = line_thickness
    self.view_in_counts = view_in_counts
    self.view_out_counts = view_out_counts

    # Heatmap colormap and heatmap np array
    self.colormap = colormap
    self.heatmap = None
    self.heatmap_alpha = heatmap_alpha

    # Predict/track information
    self.boxes = None
    self.track_ids = None
    self.clss = None
    self.track_history = defaultdict(list)

    # Region & Line Information
    self.counting_region = None
    self.line_dist_thresh = line_dist_thresh
    self.region_thickness = region_thickness
    self.region_color = count_reg_color

    # Object Counting Information
    self.in_counts = 0
    self.out_counts = 0
    self.count_ids = []
    self.class_wise_count = {}
    self.count_txt_color = count_txt_color
    self.count_bg_color = count_bg_color
    self.cls_txtdisplay_gap = 50

    # Decay factor
    self.decay_factor = decay_factor

    # Check if environment supports imshow
    self.env_check = check_imshow(warn=True)

    # Region and line selection
    self.count_reg_pts = count_reg_pts
    print(self.count_reg_pts)
    if self.count_reg_pts is not None:
        if len(self.count_reg_pts) == 2:
            print("Line Counter Initiated.")
            self.counting_region = LineString(self.count_reg_pts)
        elif len(self.count_reg_pts) >= 3:
            print("Polygon Counter Initiated.")
            self.counting_region = Polygon(self.count_reg_pts)
        else:
            print("Invalid Region points provided, region_points must be 2 for lines or >= 3 for polygons.")
            print("Using Line Counter Now")
            self.counting_region = LineString(self.count_reg_pts)

    # Shape of heatmap, if not selected
    if self.shape not in {"circle", "rect"}:
        print("Unknown shape value provided, 'circle' & 'rect' supported")
        print("Using Circular shape now")
        self.shape = "circle"

display_frames()

प्रदर्शन फ्रेम।

में स्रोत कोड ultralytics/solutions/heatmap.py
def display_frames(self):
    """Display frame."""
    cv2.imshow("Ultralytics Heatmap", self.im0)

    if cv2.waitKey(1) & 0xFF == ord("q"):
        return

extract_results(tracks, _intialized=False)

प्रदान किए गए डेटा से परिणाम निकालता है।

पैरामीटर:

नाम प्रकार या क़िस्‍म चूक
tracks list

ऑब्जेक्ट ट्रैकिंग प्रक्रिया से प्राप्त पटरियों की सूची।

आवश्यक
में स्रोत कोड ultralytics/solutions/heatmap.py
def extract_results(self, tracks, _intialized=False):
    """
    Extracts results from the provided data.

    Args:
        tracks (list): List of tracks obtained from the object tracking process.
    """
    self.boxes = tracks[0].boxes.xyxy.cpu()
    self.clss = tracks[0].boxes.cls.cpu().tolist()
    self.track_ids = tracks[0].boxes.id.int().cpu().tolist()

generate_heatmap(im0, tracks)

ट्रैकिंग डेटा के आधार पर हीटमैप जनरेट करें।

पैरामीटर:

नाम प्रकार या क़िस्‍म चूक
im0 nd array

प्रतिबिंब

आवश्यक
tracks list

ऑब्जेक्ट ट्रैकिंग प्रक्रिया से प्राप्त पटरियों की सूची।

आवश्यक
में स्रोत कोड ultralytics/solutions/heatmap.py
def generate_heatmap(self, im0, tracks):
    """
    Generate heatmap based on tracking data.

    Args:
        im0 (nd array): Image
        tracks (list): List of tracks obtained from the object tracking process.
    """
    self.im0 = im0

    # Initialize heatmap only once
    if not self.initialized:
        self.heatmap = np.zeros((int(self.im0.shape[0]), int(self.im0.shape[1])), dtype=np.float32)
        self.initialized = True

    self.heatmap *= self.decay_factor  # decay factor

    self.extract_results(tracks)
    self.annotator = Annotator(self.im0, self.tf, None)

    if self.track_ids is not None:
        # Draw counting region
        if self.count_reg_pts is not None:
            self.annotator.draw_region(
                reg_pts=self.count_reg_pts, color=self.region_color, thickness=self.region_thickness
            )

        for box, cls, track_id in zip(self.boxes, self.clss, self.track_ids):
            # Store class info
            if self.names[cls] not in self.class_wise_count:
                self.class_wise_count[self.names[cls]] = {"IN": 0, "OUT": 0}

            if self.shape == "circle":
                center = (int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2))
                radius = min(int(box[2]) - int(box[0]), int(box[3]) - int(box[1])) // 2

                y, x = np.ogrid[0 : self.heatmap.shape[0], 0 : self.heatmap.shape[1]]
                mask = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= radius**2

                self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += (
                    2 * mask[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])]
                )

            else:
                self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += 2

            # Store tracking hist
            track_line = self.track_history[track_id]
            track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)))
            if len(track_line) > 30:
                track_line.pop(0)

            prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None

            if self.count_reg_pts is not None:
                # Count objects in any polygon
                if len(self.count_reg_pts) >= 3:
                    is_inside = self.counting_region.contains(Point(track_line[-1]))

                    if prev_position is not None and is_inside and track_id not in self.count_ids:
                        self.count_ids.append(track_id)

                        if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
                            self.in_counts += 1
                            self.class_wise_count[self.names[cls]]["IN"] += 1
                        else:
                            self.out_counts += 1
                            self.class_wise_count[self.names[cls]]["OUT"] += 1

                # Count objects using line
                elif len(self.count_reg_pts) == 2:
                    if prev_position is not None and track_id not in self.count_ids:
                        distance = Point(track_line[-1]).distance(self.counting_region)
                        if distance < self.line_dist_thresh and track_id not in self.count_ids:
                            self.count_ids.append(track_id)

                            if (box[0] - prev_position[0]) * (
                                self.counting_region.centroid.x - prev_position[0]
                            ) > 0:
                                self.in_counts += 1
                                self.class_wise_count[self.names[cls]]["IN"] += 1
                            else:
                                self.out_counts += 1
                                self.class_wise_count[self.names[cls]]["OUT"] += 1

    else:
        for box, cls in zip(self.boxes, self.clss):
            if self.shape == "circle":
                center = (int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2))
                radius = min(int(box[2]) - int(box[0]), int(box[3]) - int(box[1])) // 2

                y, x = np.ogrid[0 : self.heatmap.shape[0], 0 : self.heatmap.shape[1]]
                mask = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= radius**2

                self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += (
                    2 * mask[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])]
                )

            else:
                self.heatmap[int(box[1]) : int(box[3]), int(box[0]) : int(box[2])] += 2

    if self.count_reg_pts is not None:
        labels_dict = {}

        for key, value in self.class_wise_count.items():
            if value["IN"] != 0 or value["OUT"] != 0:
                if not self.view_in_counts and not self.view_out_counts:
                    continue
                elif not self.view_in_counts:
                    labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}"
                elif not self.view_out_counts:
                    labels_dict[str.capitalize(key)] = f"IN {value['IN']}"
                else:
                    labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}"

        if labels_dict is not None:
            self.annotator.display_analytics(self.im0, labels_dict, self.count_txt_color, self.count_bg_color, 10)

    # Normalize, apply colormap to heatmap and combine with original image
    heatmap_normalized = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX)
    heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), self.colormap)
    self.im0 = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0)

    if self.env_check and self.view_img:
        self.display_frames()

    return self.im0





Created 2023-12-10, Updated 2024-06-02
Authors: glenn-jocher (3), Burhan-Q (1)