Salta para o conte√ļdo

Ultralytics API de inferência do HUB

A API de inferência do Ultralytics HUB permite-te executar a inferência através da nossa API REST sem teres de instalar e configurar localmente o ambiente Ultralytics YOLO .

Ultralytics Captura de ecrã do HUB do separador Implementar na página Modelo com uma seta a apontar para o cartão da API de Inferência Ultralytics


Observa: Ultralytics Passo a passo da API de inferência do HUB

Python

Para aceder à API de inferência do Ultralytics HUB utilizando Python, utiliza o seguinte código:

import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())

Nota

Substitui MODEL_ID com o ID do modelo pretendido, API_KEY com a tua chave API real, e path/to/image.jpg com o caminho para a imagem em que queres fazer a inferência.

cURL

Para aceder à API de inferência do Ultralytics HUB utilizando cURL, utiliza o seguinte código:

curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"

Nota

Substitui MODEL_ID com o ID do modelo pretendido, API_KEY com a tua chave API real, e path/to/image.jpg com o caminho para a imagem em que queres fazer a inferência.

Argumentos

Consulta a tabela abaixo para obteres uma lista completa dos argumentos de inferência disponíveis.

Argumenta Predefinição Tipo Descrição
image image Image file to be used for inference.
url str URL of the image if not passing a file.
size 640 int Size of the input image, valid range is 32 - 1280 pixels.
confidence 0.25 float Confidence threshold for predictions, valid range 0.01 - 1.0.
iou 0.45 float Intersection over Union (IoU) threshold, valid range 0.0 - 0.95.

Resposta

A API de inferência do Ultralytics HUB devolve uma resposta JSON.

Classificação

Modelo de classificação

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-cls.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92
    }
  ]
}

Deteção

Modelo de deteção

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92,
      width: 0.4893378019332886,
      height: 0.7437513470649719,
      xcenter: 0.4434437155723572,
      ycenter: 0.5198975801467896
    }
  ]
}

OBB

Modelo OBB

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-obb.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92,
      obb: [
        0.669310450553894,
        0.6247171759605408,
        0.9847468137741089,
        ...
      ]
    }
  ]
}

Segmentação

Modelo de segmentação

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-seg.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92,
      segment: [0.44140625, 0.15625, 0.439453125, ...]
    }
  ]
}

Pose

Modelo de pose

from ultralytics import YOLO

# Load model
model = YOLO("yolov8n-pose.pt")

# Run inference
results = model("image.jpg")

# Print image.jpg results in JSON format
print(results[0].tojson())
curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \
    -H "x-api-key: API_KEY" \
    -F "image=@/path/to/image.jpg" \
    -F "size=640" \
    -F "confidence=0.25" \
    -F "iou=0.45"
import requests

# API URL, use actual MODEL_ID
url = f"https://api.ultralytics.com/v1/predict/MODEL_ID"

# Headers, use actual API_KEY
headers = {"x-api-key": "API_KEY"}

# Inference arguments (optional)
data = {"size": 640, "confidence": 0.25, "iou": 0.45}

# Load image and send request
with open("path/to/image.jpg", "rb") as image_file:
    files = {"image": image_file}
    response = requests.post(url, headers=headers, files=files, data=data)

print(response.json())
{
  success: true,
  message: "Inference complete.",
  data: [
    {
      class: 0,
      name: "person",
      confidence: 0.92,
      keypoints: [
        0.5290805697441101,
        0.20698919892311096,
        1.0,
        0.5263055562973022,
        0.19584226608276367,
        1.0,
        0.5094948410987854,
        0.19120082259178162,
        1.0,
        ...
      ]
    }
  ]
}


Created 2024-01-23, Updated 2024-06-10
Authors: glenn-jocher (7), sergiuwaxmann (2), RizwanMunawar (1), priytosh-tripathi (1)

Coment√°rios