Skip to content

Reference for ultralytics/engine/results.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/engine/results.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.engine.results.BaseTensor

BaseTensor(data, orig_shape)

Bases: SimpleClass

Base tensor class with additional methods for easy manipulation and device handling.

Attributes:

Name Type Description
data Tensor | ndarray

Prediction data such as bounding boxes, masks, or keypoints.

orig_shape Tuple[int, int]

Original shape of the image, typically in the format (height, width).

Methods:

Name Description
cpu

Return a copy of the tensor stored in CPU memory.

numpy

Returns a copy of the tensor as a numpy array.

cuda

Moves the tensor to GPU memory, returning a new instance if necessary.

to

Return a copy of the tensor with the specified device and dtype.

Examples:

>>> import torch
>>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
>>> orig_shape = (720, 1280)
>>> base_tensor = BaseTensor(data, orig_shape)
>>> cpu_tensor = base_tensor.cpu()
>>> numpy_array = base_tensor.numpy()
>>> gpu_tensor = base_tensor.cuda()

Parameters:

Name Type Description Default
data Tensor | ndarray

Prediction data such as bounding boxes, masks, or keypoints.

required
orig_shape Tuple[int, int]

Original shape of the image in (height, width) format.

required

Examples:

>>> import torch
>>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
>>> orig_shape = (720, 1280)
>>> base_tensor = BaseTensor(data, orig_shape)
Source code in ultralytics/engine/results.py
def __init__(self, data, orig_shape) -> None:
    """
    Initialize BaseTensor with prediction data and the original shape of the image.

    Args:
        data (torch.Tensor | np.ndarray): Prediction data such as bounding boxes, masks, or keypoints.
        orig_shape (Tuple[int, int]): Original shape of the image in (height, width) format.

    Examples:
        >>> import torch
        >>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
        >>> orig_shape = (720, 1280)
        >>> base_tensor = BaseTensor(data, orig_shape)
    """
    assert isinstance(data, (torch.Tensor, np.ndarray)), "data must be torch.Tensor or np.ndarray"
    self.data = data
    self.orig_shape = orig_shape

shape property

shape

Returns the shape of the underlying data tensor.

Returns:

Type Description
Tuple[int, ...]

The shape of the data tensor.

Examples:

>>> data = torch.rand(100, 4)
>>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
>>> print(base_tensor.shape)
(100, 4)

__getitem__

__getitem__(idx)

Returns a new BaseTensor instance containing the specified indexed elements of the data tensor.

Parameters:

Name Type Description Default
idx int | List[int] | Tensor

Index or indices to select from the data tensor.

required

Returns:

Type Description
BaseTensor

A new BaseTensor instance containing the indexed data.

Examples:

>>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
>>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
>>> result = base_tensor[0]  # Select the first row
>>> print(result.data)
tensor([1, 2, 3])
Source code in ultralytics/engine/results.py
def __getitem__(self, idx):
    """
    Returns a new BaseTensor instance containing the specified indexed elements of the data tensor.

    Args:
        idx (int | List[int] | torch.Tensor): Index or indices to select from the data tensor.

    Returns:
        (BaseTensor): A new BaseTensor instance containing the indexed data.

    Examples:
        >>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
        >>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
        >>> result = base_tensor[0]  # Select the first row
        >>> print(result.data)
        tensor([1, 2, 3])
    """
    return self.__class__(self.data[idx], self.orig_shape)

__len__

__len__()

Returns the length of the underlying data tensor.

Returns:

Type Description
int

The number of elements in the first dimension of the data tensor.

Examples:

>>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
>>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
>>> len(base_tensor)
2
Source code in ultralytics/engine/results.py
def __len__(self):  # override len(results)
    """
    Returns the length of the underlying data tensor.

    Returns:
        (int): The number of elements in the first dimension of the data tensor.

    Examples:
        >>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
        >>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
        >>> len(base_tensor)
        2
    """
    return len(self.data)

cpu

cpu()

Returns a copy of the tensor stored in CPU memory.

Returns:

Type Description
BaseTensor

A new BaseTensor object with the data tensor moved to CPU memory.

Examples:

>>> data = torch.tensor([[1, 2, 3], [4, 5, 6]]).cuda()
>>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
>>> cpu_tensor = base_tensor.cpu()
>>> isinstance(cpu_tensor, BaseTensor)
True
>>> cpu_tensor.data.device
device(type='cpu')
Source code in ultralytics/engine/results.py
def cpu(self):
    """
    Returns a copy of the tensor stored in CPU memory.

    Returns:
        (BaseTensor): A new BaseTensor object with the data tensor moved to CPU memory.

    Examples:
        >>> data = torch.tensor([[1, 2, 3], [4, 5, 6]]).cuda()
        >>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
        >>> cpu_tensor = base_tensor.cpu()
        >>> isinstance(cpu_tensor, BaseTensor)
        True
        >>> cpu_tensor.data.device
        device(type='cpu')
    """
    return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape)

cuda

cuda()

Moves the tensor to GPU memory.

Returns:

Type Description
BaseTensor

A new BaseTensor instance with the data moved to GPU memory if it's not already a numpy array, otherwise returns self.

Examples:

>>> import torch
>>> from ultralytics.engine.results import BaseTensor
>>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
>>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
>>> gpu_tensor = base_tensor.cuda()
>>> print(gpu_tensor.data.device)
cuda:0
Source code in ultralytics/engine/results.py
def cuda(self):
    """
    Moves the tensor to GPU memory.

    Returns:
        (BaseTensor): A new BaseTensor instance with the data moved to GPU memory if it's not already a
            numpy array, otherwise returns self.

    Examples:
        >>> import torch
        >>> from ultralytics.engine.results import BaseTensor
        >>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
        >>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
        >>> gpu_tensor = base_tensor.cuda()
        >>> print(gpu_tensor.data.device)
        cuda:0
    """
    return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape)

numpy

numpy()

Returns a copy of the tensor as a numpy array.

Returns:

Type Description
ndarray

A numpy array containing the same data as the original tensor.

Examples:

>>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
>>> orig_shape = (720, 1280)
>>> base_tensor = BaseTensor(data, orig_shape)
>>> numpy_array = base_tensor.numpy()
>>> print(type(numpy_array))
<class 'numpy.ndarray'>
Source code in ultralytics/engine/results.py
def numpy(self):
    """
    Returns a copy of the tensor as a numpy array.

    Returns:
        (np.ndarray): A numpy array containing the same data as the original tensor.

    Examples:
        >>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
        >>> orig_shape = (720, 1280)
        >>> base_tensor = BaseTensor(data, orig_shape)
        >>> numpy_array = base_tensor.numpy()
        >>> print(type(numpy_array))
        <class 'numpy.ndarray'>
    """
    return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape)

to

to(*args, **kwargs)

Return a copy of the tensor with the specified device and dtype.

Parameters:

Name Type Description Default
*args Any

Variable length argument list to be passed to torch.Tensor.to().

()
**kwargs Any

Arbitrary keyword arguments to be passed to torch.Tensor.to().

{}

Returns:

Type Description
BaseTensor

A new BaseTensor instance with the data moved to the specified device and/or dtype.

Examples:

>>> base_tensor = BaseTensor(torch.randn(3, 4), orig_shape=(480, 640))
>>> cuda_tensor = base_tensor.to("cuda")
>>> float16_tensor = base_tensor.to(dtype=torch.float16)
Source code in ultralytics/engine/results.py
def to(self, *args, **kwargs):
    """
    Return a copy of the tensor with the specified device and dtype.

    Args:
        *args (Any): Variable length argument list to be passed to torch.Tensor.to().
        **kwargs (Any): Arbitrary keyword arguments to be passed to torch.Tensor.to().

    Returns:
        (BaseTensor): A new BaseTensor instance with the data moved to the specified device and/or dtype.

    Examples:
        >>> base_tensor = BaseTensor(torch.randn(3, 4), orig_shape=(480, 640))
        >>> cuda_tensor = base_tensor.to("cuda")
        >>> float16_tensor = base_tensor.to(dtype=torch.float16)
    """
    return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape)





ultralytics.engine.results.Results

Results(
    orig_img,
    path,
    names,
    boxes=None,
    masks=None,
    probs=None,
    keypoints=None,
    obb=None,
    speed=None,
)

Bases: SimpleClass

A class for storing and manipulating inference results.

This class encapsulates the functionality for handling detection, segmentation, pose estimation, and classification results from YOLO models.

Attributes:

Name Type Description
orig_img ndarray

Original image as a numpy array.

orig_shape Tuple[int, int]

Original image shape in (height, width) format.

boxes Boxes | None

Object containing detection bounding boxes.

masks Masks | None

Object containing detection masks.

probs Probs | None

Object containing class probabilities for classification tasks.

keypoints Keypoints | None

Object containing detected keypoints for each object.

obb OBB | None

Object containing oriented bounding boxes.

speed Dict[str, float | None]

Dictionary of preprocess, inference, and postprocess speeds.

names Dict[int, str]

Dictionary mapping class IDs to class names.

path str

Path to the image file.

_keys Tuple[str, ...]

Tuple of attribute names for internal use.

Methods:

Name Description
update

Updates object attributes with new detection results.

cpu

Returns a copy of the Results object with all tensors on CPU memory.

numpy

Returns a copy of the Results object with all tensors as numpy arrays.

cuda

Returns a copy of the Results object with all tensors on GPU memory.

to

Returns a copy of the Results object with tensors on a specified device and dtype.

new

Returns a new Results object with the same image, path, and names.

plot

Plots detection results on an input image, returning an annotated image.

show

Shows annotated results on screen.

save

Saves annotated results to file.

verbose

Returns a log string for each task, detailing detections and classifications.

save_txt

Saves detection results to a text file.

save_crop

Saves cropped detection images.

tojson

Converts detection results to JSON format.

Examples:

>>> results = model("path/to/image.jpg")
>>> for result in results:
...     print(result.boxes)  # Print detection boxes
...     result.show()  # Display the annotated image
...     result.save(filename="result.jpg")  # Save annotated image

Parameters:

Name Type Description Default
orig_img ndarray

The original image as a numpy array.

required
path str

The path to the image file.

required
names Dict

A dictionary of class names.

required
boxes Tensor | None

A 2D tensor of bounding box coordinates for each detection.

None
masks Tensor | None

A 3D tensor of detection masks, where each mask is a binary image.

None
probs Tensor | None

A 1D tensor of probabilities of each class for classification task.

None
keypoints Tensor | None

A 2D tensor of keypoint coordinates for each detection.

None
obb Tensor | None

A 2D tensor of oriented bounding box coordinates for each detection.

None
speed Dict | None

A dictionary containing preprocess, inference, and postprocess speeds (ms/image).

None

Examples:

>>> results = model("path/to/image.jpg")
>>> result = results[0]  # Get the first result
>>> boxes = result.boxes  # Get the boxes for the first result
>>> masks = result.masks  # Get the masks for the first result
Notes

For the default pose model, keypoint indices for human body pose estimation are: 0: Nose, 1: Left Eye, 2: Right Eye, 3: Left Ear, 4: Right Ear 5: Left Shoulder, 6: Right Shoulder, 7: Left Elbow, 8: Right Elbow 9: Left Wrist, 10: Right Wrist, 11: Left Hip, 12: Right Hip 13: Left Knee, 14: Right Knee, 15: Left Ankle, 16: Right Ankle

Source code in ultralytics/engine/results.py
def __init__(
    self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None, obb=None, speed=None
) -> None:
    """
    Initialize the Results class for storing and manipulating inference results.

    Args:
        orig_img (numpy.ndarray): The original image as a numpy array.
        path (str): The path to the image file.
        names (Dict): A dictionary of class names.
        boxes (torch.Tensor | None): A 2D tensor of bounding box coordinates for each detection.
        masks (torch.Tensor | None): A 3D tensor of detection masks, where each mask is a binary image.
        probs (torch.Tensor | None): A 1D tensor of probabilities of each class for classification task.
        keypoints (torch.Tensor | None): A 2D tensor of keypoint coordinates for each detection.
        obb (torch.Tensor | None): A 2D tensor of oriented bounding box coordinates for each detection.
        speed (Dict | None): A dictionary containing preprocess, inference, and postprocess speeds (ms/image).

    Examples:
        >>> results = model("path/to/image.jpg")
        >>> result = results[0]  # Get the first result
        >>> boxes = result.boxes  # Get the boxes for the first result
        >>> masks = result.masks  # Get the masks for the first result

    Notes:
        For the default pose model, keypoint indices for human body pose estimation are:
        0: Nose, 1: Left Eye, 2: Right Eye, 3: Left Ear, 4: Right Ear
        5: Left Shoulder, 6: Right Shoulder, 7: Left Elbow, 8: Right Elbow
        9: Left Wrist, 10: Right Wrist, 11: Left Hip, 12: Right Hip
        13: Left Knee, 14: Right Knee, 15: Left Ankle, 16: Right Ankle
    """
    self.orig_img = orig_img
    self.orig_shape = orig_img.shape[:2]
    self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None  # native size boxes
    self.masks = Masks(masks, self.orig_shape) if masks is not None else None  # native size or imgsz masks
    self.probs = Probs(probs) if probs is not None else None
    self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None
    self.obb = OBB(obb, self.orig_shape) if obb is not None else None
    self.speed = speed if speed is not None else {"preprocess": None, "inference": None, "postprocess": None}
    self.names = names
    self.path = path
    self.save_dir = None
    self._keys = "boxes", "masks", "probs", "keypoints", "obb"

__getitem__

__getitem__(idx)

Return a Results object for a specific index of inference results.

Parameters:

Name Type Description Default
idx int | slice

Index or slice to retrieve from the Results object.

required

Returns:

Type Description
Results

A new Results object containing the specified subset of inference results.

Examples:

>>> results = model("path/to/image.jpg")  # Perform inference
>>> single_result = results[0]  # Get the first result
>>> subset_results = results[1:4]  # Get a slice of results
Source code in ultralytics/engine/results.py
def __getitem__(self, idx):
    """
    Return a Results object for a specific index of inference results.

    Args:
        idx (int | slice): Index or slice to retrieve from the Results object.

    Returns:
        (Results): A new Results object containing the specified subset of inference results.

    Examples:
        >>> results = model("path/to/image.jpg")  # Perform inference
        >>> single_result = results[0]  # Get the first result
        >>> subset_results = results[1:4]  # Get a slice of results
    """
    return self._apply("__getitem__", idx)

__len__

__len__()

Return the number of detections in the Results object.

Returns:

Type Description
int

The number of detections, determined by the length of the first non-empty attribute (boxes, masks, probs, keypoints, or obb).

Examples:

>>> results = Results(orig_img, path, names, boxes=torch.rand(5, 4))
>>> len(results)
5
Source code in ultralytics/engine/results.py
def __len__(self):
    """
    Return the number of detections in the Results object.

    Returns:
        (int): The number of detections, determined by the length of the first non-empty attribute
            (boxes, masks, probs, keypoints, or obb).

    Examples:
        >>> results = Results(orig_img, path, names, boxes=torch.rand(5, 4))
        >>> len(results)
        5
    """
    for k in self._keys:
        v = getattr(self, k)
        if v is not None:
            return len(v)

cpu

cpu()

Returns a copy of the Results object with all its tensors moved to CPU memory.

This method creates a new Results object with all tensor attributes (boxes, masks, probs, keypoints, obb) transferred to CPU memory. It's useful for moving data from GPU to CPU for further processing or saving.

Returns:

Type Description
Results

A new Results object with all tensor attributes on CPU memory.

Examples:

>>> results = model("path/to/image.jpg")  # Perform inference
>>> cpu_result = results[0].cpu()  # Move the first result to CPU
>>> print(cpu_result.boxes.device)  # Output: cpu
Source code in ultralytics/engine/results.py
def cpu(self):
    """
    Returns a copy of the Results object with all its tensors moved to CPU memory.

    This method creates a new Results object with all tensor attributes (boxes, masks, probs, keypoints, obb)
    transferred to CPU memory. It's useful for moving data from GPU to CPU for further processing or saving.

    Returns:
        (Results): A new Results object with all tensor attributes on CPU memory.

    Examples:
        >>> results = model("path/to/image.jpg")  # Perform inference
        >>> cpu_result = results[0].cpu()  # Move the first result to CPU
        >>> print(cpu_result.boxes.device)  # Output: cpu
    """
    return self._apply("cpu")

cuda

cuda()

Moves all tensors in the Results object to GPU memory.

Returns:

Type Description
Results

A new Results object with all tensors moved to CUDA device.

Examples:

>>> results = model("path/to/image.jpg")
>>> cuda_results = results[0].cuda()  # Move first result to GPU
>>> for result in results:
...     result_cuda = result.cuda()  # Move each result to GPU
Source code in ultralytics/engine/results.py
def cuda(self):
    """
    Moves all tensors in the Results object to GPU memory.

    Returns:
        (Results): A new Results object with all tensors moved to CUDA device.

    Examples:
        >>> results = model("path/to/image.jpg")
        >>> cuda_results = results[0].cuda()  # Move first result to GPU
        >>> for result in results:
        ...     result_cuda = result.cuda()  # Move each result to GPU
    """
    return self._apply("cuda")

new

new()

Creates a new Results object with the same image, path, names, and speed attributes.

Returns:

Type Description
Results

A new Results object with copied attributes from the original instance.

Examples:

>>> results = model("path/to/image.jpg")
>>> new_result = results[0].new()
Source code in ultralytics/engine/results.py
def new(self):
    """
    Creates a new Results object with the same image, path, names, and speed attributes.

    Returns:
        (Results): A new Results object with copied attributes from the original instance.

    Examples:
        >>> results = model("path/to/image.jpg")
        >>> new_result = results[0].new()
    """
    return Results(orig_img=self.orig_img, path=self.path, names=self.names, speed=self.speed)

numpy

numpy()

Converts all tensors in the Results object to numpy arrays.

Returns:

Type Description
Results

A new Results object with all tensors converted to numpy arrays.

Examples:

>>> results = model("path/to/image.jpg")
>>> numpy_result = results[0].numpy()
>>> type(numpy_result.boxes.data)
<class 'numpy.ndarray'>
Notes

This method creates a new Results object, leaving the original unchanged. It's useful for interoperability with numpy-based libraries or when CPU-based operations are required.

Source code in ultralytics/engine/results.py
def numpy(self):
    """
    Converts all tensors in the Results object to numpy arrays.

    Returns:
        (Results): A new Results object with all tensors converted to numpy arrays.

    Examples:
        >>> results = model("path/to/image.jpg")
        >>> numpy_result = results[0].numpy()
        >>> type(numpy_result.boxes.data)
        <class 'numpy.ndarray'>

    Notes:
        This method creates a new Results object, leaving the original unchanged. It's useful for
        interoperability with numpy-based libraries or when CPU-based operations are required.
    """
    return self._apply("numpy")

plot

plot(
    conf=True,
    line_width=None,
    font_size=None,
    font="Arial.ttf",
    pil=False,
    img=None,
    im_gpu=None,
    kpt_radius=5,
    kpt_line=True,
    labels=True,
    boxes=True,
    masks=True,
    probs=True,
    show=False,
    save=False,
    filename=None,
    color_mode="class",
)

Plots detection results on an input RGB image.

Parameters:

Name Type Description Default
conf bool

Whether to plot detection confidence scores.

True
line_width float | None

Line width of bounding boxes. If None, scaled to image size.

None
font_size float | None

Font size for text. If None, scaled to image size.

None
font str

Font to use for text.

'Arial.ttf'
pil bool

Whether to return the image as a PIL Image.

False
img ndarray | None

Image to plot on. If None, uses original image.

None
im_gpu Tensor | None

Normalized image on GPU for faster mask plotting.

None
kpt_radius int

Radius of drawn keypoints.

5
kpt_line bool

Whether to draw lines connecting keypoints.

True
labels bool

Whether to plot labels of bounding boxes.

True
boxes bool

Whether to plot bounding boxes.

True
masks bool

Whether to plot masks.

True
probs bool

Whether to plot classification probabilities.

True
show bool

Whether to display the annotated image.

False
save bool

Whether to save the annotated image.

False
filename str | None

Filename to save image if save is True.

None
color_mode bool

Specify the color mode, e.g., 'instance' or 'class'. Default to 'class'.

'class'

Returns:

Type Description
ndarray

Annotated image as a numpy array.

Examples:

>>> results = model("image.jpg")
>>> for result in results:
...     im = result.plot()
...     im.show()
Source code in ultralytics/engine/results.py
def plot(
    self,
    conf=True,
    line_width=None,
    font_size=None,
    font="Arial.ttf",
    pil=False,
    img=None,
    im_gpu=None,
    kpt_radius=5,
    kpt_line=True,
    labels=True,
    boxes=True,
    masks=True,
    probs=True,
    show=False,
    save=False,
    filename=None,
    color_mode="class",
):
    """
    Plots detection results on an input RGB image.

    Args:
        conf (bool): Whether to plot detection confidence scores.
        line_width (float | None): Line width of bounding boxes. If None, scaled to image size.
        font_size (float | None): Font size for text. If None, scaled to image size.
        font (str): Font to use for text.
        pil (bool): Whether to return the image as a PIL Image.
        img (np.ndarray | None): Image to plot on. If None, uses original image.
        im_gpu (torch.Tensor | None): Normalized image on GPU for faster mask plotting.
        kpt_radius (int): Radius of drawn keypoints.
        kpt_line (bool): Whether to draw lines connecting keypoints.
        labels (bool): Whether to plot labels of bounding boxes.
        boxes (bool): Whether to plot bounding boxes.
        masks (bool): Whether to plot masks.
        probs (bool): Whether to plot classification probabilities.
        show (bool): Whether to display the annotated image.
        save (bool): Whether to save the annotated image.
        filename (str | None): Filename to save image if save is True.
        color_mode (bool): Specify the color mode, e.g., 'instance' or 'class'. Default to 'class'.

    Returns:
        (np.ndarray): Annotated image as a numpy array.

    Examples:
        >>> results = model("image.jpg")
        >>> for result in results:
        ...     im = result.plot()
        ...     im.show()
    """
    assert color_mode in {"instance", "class"}, f"Expected color_mode='instance' or 'class', not {color_mode}."
    if img is None and isinstance(self.orig_img, torch.Tensor):
        img = (self.orig_img[0].detach().permute(1, 2, 0).contiguous() * 255).to(torch.uint8).cpu().numpy()

    names = self.names
    is_obb = self.obb is not None
    pred_boxes, show_boxes = self.obb if is_obb else self.boxes, boxes
    pred_masks, show_masks = self.masks, masks
    pred_probs, show_probs = self.probs, probs
    annotator = Annotator(
        deepcopy(self.orig_img if img is None else img),
        line_width,
        font_size,
        font,
        pil or (pred_probs is not None and show_probs),  # Classify tasks default to pil=True
        example=names,
    )

    # Plot Segment results
    if pred_masks and show_masks:
        if im_gpu is None:
            img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
            im_gpu = (
                torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device)
                .permute(2, 0, 1)
                .flip(0)
                .contiguous()
                / 255
            )
        idx = (
            pred_boxes.id
            if pred_boxes.id is not None and color_mode == "instance"
            else pred_boxes.cls
            if pred_boxes and color_mode == "class"
            else reversed(range(len(pred_masks)))
        )
        annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)

    # Plot Detect results
    if pred_boxes is not None and show_boxes:
        for i, d in enumerate(reversed(pred_boxes)):
            c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
            name = ("" if id is None else f"id:{id} ") + names[c]
            label = (f"{name} {conf:.2f}" if conf else name) if labels else None
            box = d.xyxyxyxy.reshape(-1, 4, 2).squeeze() if is_obb else d.xyxy.squeeze()
            annotator.box_label(
                box,
                label,
                color=colors(
                    c
                    if color_mode == "class"
                    else id
                    if id is not None
                    else i
                    if color_mode == "instance"
                    else None,
                    True,
                ),
                rotated=is_obb,
            )

    # Plot Classify results
    if pred_probs is not None and show_probs:
        text = ",\n".join(f"{names[j] if names else j} {pred_probs.data[j]:.2f}" for j in pred_probs.top5)
        x = round(self.orig_shape[0] * 0.03)
        annotator.text([x, x], text, txt_color=(255, 255, 255))  # TODO: allow setting colors

    # Plot Pose results
    if self.keypoints is not None:
        for i, k in enumerate(reversed(self.keypoints.data)):
            annotator.kpts(
                k,
                self.orig_shape,
                radius=kpt_radius,
                kpt_line=kpt_line,
                kpt_color=colors(i, True) if color_mode == "instance" else None,
            )

    # Show results
    if show:
        annotator.show(self.path)

    # Save results
    if save:
        annotator.save(filename)

    return annotator.result()

save

save(filename=None, *args, **kwargs)

Saves annotated inference results image to file.

This method plots the detection results on the original image and saves the annotated image to a file. It utilizes the plot method to generate the annotated image and then saves it to the specified filename.

Parameters:

Name Type Description Default
filename str | Path | None

The filename to save the annotated image. If None, a default filename is generated based on the original image path.

None
*args Any

Variable length argument list to be passed to the plot method.

()
**kwargs Any

Arbitrary keyword arguments to be passed to the plot method.

{}

Examples:

>>> results = model("path/to/image.jpg")
>>> for result in results:
...     result.save("annotated_image.jpg")
>>> # Or with custom plot arguments
>>> for result in results:
...     result.save("annotated_image.jpg", conf=False, line_width=2)
Source code in ultralytics/engine/results.py
def save(self, filename=None, *args, **kwargs):
    """
    Saves annotated inference results image to file.

    This method plots the detection results on the original image and saves the annotated image to a file. It
    utilizes the `plot` method to generate the annotated image and then saves it to the specified filename.

    Args:
        filename (str | Path | None): The filename to save the annotated image. If None, a default filename
            is generated based on the original image path.
        *args (Any): Variable length argument list to be passed to the `plot` method.
        **kwargs (Any): Arbitrary keyword arguments to be passed to the `plot` method.

    Examples:
        >>> results = model("path/to/image.jpg")
        >>> for result in results:
        ...     result.save("annotated_image.jpg")
        >>> # Or with custom plot arguments
        >>> for result in results:
        ...     result.save("annotated_image.jpg", conf=False, line_width=2)
    """
    if not filename:
        filename = f"results_{Path(self.path).name}"
    self.plot(save=True, filename=filename, *args, **kwargs)
    return filename

save_crop

save_crop(save_dir, file_name=Path('im.jpg'))

Saves cropped detection images to specified directory.

This method saves cropped images of detected objects to a specified directory. Each crop is saved in a subdirectory named after the object's class, with the filename based on the input file_name.

Parameters:

Name Type Description Default
save_dir str | Path

Directory path where cropped images will be saved.

required
file_name str | Path

Base filename for the saved cropped images. Default is Path("im.jpg").

Path('im.jpg')
Notes
  • This method does not support Classify or Oriented Bounding Box (OBB) tasks.
  • Crops are saved as 'save_dir/class_name/file_name.jpg'.
  • The method will create necessary subdirectories if they don't exist.
  • Original image is copied before cropping to avoid modifying the original.

Examples:

>>> results = model("path/to/image.jpg")
>>> for result in results:
...     result.save_crop(save_dir="path/to/crops", file_name="detection")
Source code in ultralytics/engine/results.py
def save_crop(self, save_dir, file_name=Path("im.jpg")):
    """
    Saves cropped detection images to specified directory.

    This method saves cropped images of detected objects to a specified directory. Each crop is saved in a
    subdirectory named after the object's class, with the filename based on the input file_name.

    Args:
        save_dir (str | Path): Directory path where cropped images will be saved.
        file_name (str | Path): Base filename for the saved cropped images. Default is Path("im.jpg").

    Notes:
        - This method does not support Classify or Oriented Bounding Box (OBB) tasks.
        - Crops are saved as 'save_dir/class_name/file_name.jpg'.
        - The method will create necessary subdirectories if they don't exist.
        - Original image is copied before cropping to avoid modifying the original.

    Examples:
        >>> results = model("path/to/image.jpg")
        >>> for result in results:
        ...     result.save_crop(save_dir="path/to/crops", file_name="detection")
    """
    if self.probs is not None:
        LOGGER.warning("WARNING ⚠️ Classify task do not support `save_crop`.")
        return
    if self.obb is not None:
        LOGGER.warning("WARNING ⚠️ OBB task do not support `save_crop`.")
        return
    for d in self.boxes:
        save_one_box(
            d.xyxy,
            self.orig_img.copy(),
            file=Path(save_dir) / self.names[int(d.cls)] / f"{Path(file_name)}.jpg",
            BGR=True,
        )

save_txt

save_txt(txt_file, save_conf=False)

Save detection results to a text file.

Parameters:

Name Type Description Default
txt_file str | Path

Path to the output text file.

required
save_conf bool

Whether to include confidence scores in the output.

False

Returns:

Type Description
str

Path to the saved text file.

Examples:

>>> from ultralytics import YOLO
>>> model = YOLO("yolov8n.pt")
>>> results = model("path/to/image.jpg")
>>> for result in results:
...     result.save_txt("output.txt")
Notes
  • The file will contain one line per detection or classification with the following structure:
  • For detections: class confidence x_center y_center width height
  • For classifications: confidence class_name
  • For masks and keypoints, the specific formats will vary accordingly.
  • The function will create the output directory if it does not exist.
  • If save_conf is False, the confidence scores will be excluded from the output.
  • Existing contents of the file will not be overwritten; new results will be appended.
Source code in ultralytics/engine/results.py
def save_txt(self, txt_file, save_conf=False):
    """
    Save detection results to a text file.

    Args:
        txt_file (str | Path): Path to the output text file.
        save_conf (bool): Whether to include confidence scores in the output.

    Returns:
        (str): Path to the saved text file.

    Examples:
        >>> from ultralytics import YOLO
        >>> model = YOLO("yolov8n.pt")
        >>> results = model("path/to/image.jpg")
        >>> for result in results:
        ...     result.save_txt("output.txt")

    Notes:
        - The file will contain one line per detection or classification with the following structure:
          - For detections: `class confidence x_center y_center width height`
          - For classifications: `confidence class_name`
          - For masks and keypoints, the specific formats will vary accordingly.
        - The function will create the output directory if it does not exist.
        - If save_conf is False, the confidence scores will be excluded from the output.
        - Existing contents of the file will not be overwritten; new results will be appended.
    """
    is_obb = self.obb is not None
    boxes = self.obb if is_obb else self.boxes
    masks = self.masks
    probs = self.probs
    kpts = self.keypoints
    texts = []
    if probs is not None:
        # Classify
        [texts.append(f"{probs.data[j]:.2f} {self.names[j]}") for j in probs.top5]
    elif boxes:
        # Detect/segment/pose
        for j, d in enumerate(boxes):
            c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item())
            line = (c, *(d.xyxyxyxyn.view(-1) if is_obb else d.xywhn.view(-1)))
            if masks:
                seg = masks[j].xyn[0].copy().reshape(-1)  # reversed mask.xyn, (n,2) to (n*2)
                line = (c, *seg)
            if kpts is not None:
                kpt = torch.cat((kpts[j].xyn, kpts[j].conf[..., None]), 2) if kpts[j].has_visible else kpts[j].xyn
                line += (*kpt.reshape(-1).tolist(),)
            line += (conf,) * save_conf + (() if id is None else (id,))
            texts.append(("%g " * len(line)).rstrip() % line)

    if texts:
        Path(txt_file).parent.mkdir(parents=True, exist_ok=True)  # make directory
        with open(txt_file, "a") as f:
            f.writelines(text + "\n" for text in texts)

show

show(*args, **kwargs)

Display the image with annotated inference results.

This method plots the detection results on the original image and displays it. It's a convenient way to visualize the model's predictions directly.

Parameters:

Name Type Description Default
*args Any

Variable length argument list to be passed to the plot() method.

()
**kwargs Any

Arbitrary keyword arguments to be passed to the plot() method.

{}

Examples:

>>> results = model("path/to/image.jpg")
>>> results[0].show()  # Display the first result
>>> for result in results:
...     result.show()  # Display all results
Source code in ultralytics/engine/results.py
def show(self, *args, **kwargs):
    """
    Display the image with annotated inference results.

    This method plots the detection results on the original image and displays it. It's a convenient way to
    visualize the model's predictions directly.

    Args:
        *args (Any): Variable length argument list to be passed to the `plot()` method.
        **kwargs (Any): Arbitrary keyword arguments to be passed to the `plot()` method.

    Examples:
        >>> results = model("path/to/image.jpg")
        >>> results[0].show()  # Display the first result
        >>> for result in results:
        ...     result.show()  # Display all results
    """
    self.plot(show=True, *args, **kwargs)

summary

summary(normalize=False, decimals=5)

Converts inference results to a summarized dictionary with optional normalization for box coordinates.

This method creates a list of detection dictionaries, each containing information about a single detection or classification result. For classification tasks, it returns the top class and its confidence. For detection tasks, it includes class information, bounding box coordinates, and optionally mask segments and keypoints.

Parameters:

Name Type Description Default
normalize bool

Whether to normalize bounding box coordinates by image dimensions. Defaults to False.

False
decimals int

Number of decimal places to round the output values to. Defaults to 5.

5

Returns:

Type Description
List[Dict]

A list of dictionaries, each containing summarized information for a single detection or classification result. The structure of each dictionary varies based on the task type (classification or detection) and available information (boxes, masks, keypoints).

Examples:

>>> results = model("image.jpg")
>>> summary = results[0].summary()
>>> print(summary)
Source code in ultralytics/engine/results.py
def summary(self, normalize=False, decimals=5):
    """
    Converts inference results to a summarized dictionary with optional normalization for box coordinates.

    This method creates a list of detection dictionaries, each containing information about a single
    detection or classification result. For classification tasks, it returns the top class and its
    confidence. For detection tasks, it includes class information, bounding box coordinates, and
    optionally mask segments and keypoints.

    Args:
        normalize (bool): Whether to normalize bounding box coordinates by image dimensions. Defaults to False.
        decimals (int): Number of decimal places to round the output values to. Defaults to 5.

    Returns:
        (List[Dict]): A list of dictionaries, each containing summarized information for a single
            detection or classification result. The structure of each dictionary varies based on the
            task type (classification or detection) and available information (boxes, masks, keypoints).

    Examples:
        >>> results = model("image.jpg")
        >>> summary = results[0].summary()
        >>> print(summary)
    """
    # Create list of detection dictionaries
    results = []
    if self.probs is not None:
        class_id = self.probs.top1
        results.append(
            {
                "name": self.names[class_id],
                "class": class_id,
                "confidence": round(self.probs.top1conf.item(), decimals),
            }
        )
        return results

    is_obb = self.obb is not None
    data = self.obb if is_obb else self.boxes
    h, w = self.orig_shape if normalize else (1, 1)
    for i, row in enumerate(data):  # xyxy, track_id if tracking, conf, class_id
        class_id, conf = int(row.cls), round(row.conf.item(), decimals)
        box = (row.xyxyxyxy if is_obb else row.xyxy).squeeze().reshape(-1, 2).tolist()
        xy = {}
        for j, b in enumerate(box):
            xy[f"x{j + 1}"] = round(b[0] / w, decimals)
            xy[f"y{j + 1}"] = round(b[1] / h, decimals)
        result = {"name": self.names[class_id], "class": class_id, "confidence": conf, "box": xy}
        if data.is_track:
            result["track_id"] = int(row.id.item())  # track ID
        if self.masks:
            result["segments"] = {
                "x": (self.masks.xy[i][:, 0] / w).round(decimals).tolist(),
                "y": (self.masks.xy[i][:, 1] / h).round(decimals).tolist(),
            }
        if self.keypoints is not None:
            x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1)  # torch Tensor
            result["keypoints"] = {
                "x": (x / w).numpy().round(decimals).tolist(),  # decimals named argument required
                "y": (y / h).numpy().round(decimals).tolist(),
                "visible": visible.numpy().round(decimals).tolist(),
            }
        results.append(result)

    return results

to

to(*args, **kwargs)

Moves all tensors in the Results object to the specified device and dtype.

Parameters:

Name Type Description Default
*args Any

Variable length argument list to be passed to torch.Tensor.to().

()
**kwargs Any

Arbitrary keyword arguments to be passed to torch.Tensor.to().

{}

Returns:

Type Description
Results

A new Results object with all tensors moved to the specified device and dtype.

Examples:

>>> results = model("path/to/image.jpg")
>>> result_cuda = results[0].to("cuda")  # Move first result to GPU
>>> result_cpu = results[0].to("cpu")  # Move first result to CPU
>>> result_half = results[0].to(dtype=torch.float16)  # Convert first result to half precision
Source code in ultralytics/engine/results.py
def to(self, *args, **kwargs):
    """
    Moves all tensors in the Results object to the specified device and dtype.

    Args:
        *args (Any): Variable length argument list to be passed to torch.Tensor.to().
        **kwargs (Any): Arbitrary keyword arguments to be passed to torch.Tensor.to().

    Returns:
        (Results): A new Results object with all tensors moved to the specified device and dtype.

    Examples:
        >>> results = model("path/to/image.jpg")
        >>> result_cuda = results[0].to("cuda")  # Move first result to GPU
        >>> result_cpu = results[0].to("cpu")  # Move first result to CPU
        >>> result_half = results[0].to(dtype=torch.float16)  # Convert first result to half precision
    """
    return self._apply("to", *args, **kwargs)

tojson

tojson(normalize=False, decimals=5)

Converts detection results to JSON format.

This method serializes the detection results into a JSON-compatible format. It includes information about detected objects such as bounding boxes, class names, confidence scores, and optionally segmentation masks and keypoints.

Parameters:

Name Type Description Default
normalize bool

Whether to normalize the bounding box coordinates by the image dimensions. If True, coordinates will be returned as float values between 0 and 1. Defaults to False.

False
decimals int

Number of decimal places to round the output values to. Defaults to 5.

5

Returns:

Type Description
str

A JSON string containing the serialized detection results.

Examples:

>>> results = model("path/to/image.jpg")
>>> json_result = results[0].tojson()
>>> print(json_result)
Notes
  • For classification tasks, the JSON will contain class probabilities instead of bounding boxes.
  • For object detection tasks, the JSON will include bounding box coordinates, class names, and confidence scores.
  • If available, segmentation masks and keypoints will also be included in the JSON output.
  • The method uses the summary method internally to generate the data structure before converting it to JSON.
Source code in ultralytics/engine/results.py
def tojson(self, normalize=False, decimals=5):
    """
    Converts detection results to JSON format.

    This method serializes the detection results into a JSON-compatible format. It includes information
    about detected objects such as bounding boxes, class names, confidence scores, and optionally
    segmentation masks and keypoints.

    Args:
        normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
            If True, coordinates will be returned as float values between 0 and 1. Defaults to False.
        decimals (int): Number of decimal places to round the output values to. Defaults to 5.

    Returns:
        (str): A JSON string containing the serialized detection results.

    Examples:
        >>> results = model("path/to/image.jpg")
        >>> json_result = results[0].tojson()
        >>> print(json_result)

    Notes:
        - For classification tasks, the JSON will contain class probabilities instead of bounding boxes.
        - For object detection tasks, the JSON will include bounding box coordinates, class names, and
          confidence scores.
        - If available, segmentation masks and keypoints will also be included in the JSON output.
        - The method uses the `summary` method internally to generate the data structure before
          converting it to JSON.
    """
    import json

    return json.dumps(self.summary(normalize=normalize, decimals=decimals), indent=2)

update

update(boxes=None, masks=None, probs=None, obb=None)

Updates the Results object with new detection data.

This method allows updating the boxes, masks, probabilities, and oriented bounding boxes (OBB) of the Results object. It ensures that boxes are clipped to the original image shape.

Parameters:

Name Type Description Default
boxes Tensor | None

A tensor of shape (N, 6) containing bounding box coordinates and confidence scores. The format is (x1, y1, x2, y2, conf, class).

None
masks Tensor | None

A tensor of shape (N, H, W) containing segmentation masks.

None
probs Tensor | None

A tensor of shape (num_classes,) containing class probabilities.

None
obb Tensor | None

A tensor of shape (N, 5) containing oriented bounding box coordinates.

None

Examples:

>>> results = model("image.jpg")
>>> new_boxes = torch.tensor([[100, 100, 200, 200, 0.9, 0]])
>>> results[0].update(boxes=new_boxes)
Source code in ultralytics/engine/results.py
def update(self, boxes=None, masks=None, probs=None, obb=None):
    """
    Updates the Results object with new detection data.

    This method allows updating the boxes, masks, probabilities, and oriented bounding boxes (OBB) of the
    Results object. It ensures that boxes are clipped to the original image shape.

    Args:
        boxes (torch.Tensor | None): A tensor of shape (N, 6) containing bounding box coordinates and
            confidence scores. The format is (x1, y1, x2, y2, conf, class).
        masks (torch.Tensor | None): A tensor of shape (N, H, W) containing segmentation masks.
        probs (torch.Tensor | None): A tensor of shape (num_classes,) containing class probabilities.
        obb (torch.Tensor | None): A tensor of shape (N, 5) containing oriented bounding box coordinates.

    Examples:
        >>> results = model("image.jpg")
        >>> new_boxes = torch.tensor([[100, 100, 200, 200, 0.9, 0]])
        >>> results[0].update(boxes=new_boxes)
    """
    if boxes is not None:
        self.boxes = Boxes(ops.clip_boxes(boxes, self.orig_shape), self.orig_shape)
    if masks is not None:
        self.masks = Masks(masks, self.orig_shape)
    if probs is not None:
        self.probs = probs
    if obb is not None:
        self.obb = OBB(obb, self.orig_shape)

verbose

verbose()

Returns a log string for each task in the results, detailing detection and classification outcomes.

This method generates a human-readable string summarizing the detection and classification results. It includes the number of detections for each class and the top probabilities for classification tasks.

Returns:

Type Description
str

A formatted string containing a summary of the results. For detection tasks, it includes the number of detections per class. For classification tasks, it includes the top 5 class probabilities.

Examples:

>>> results = model("path/to/image.jpg")
>>> for result in results:
...     print(result.verbose())
2 persons, 1 car, 3 traffic lights,
dog 0.92, cat 0.78, horse 0.64,
Notes
  • If there are no detections, the method returns "(no detections), " for detection tasks.
  • For classification tasks, it returns the top 5 class probabilities and their corresponding class names.
  • The returned string is comma-separated and ends with a comma and a space.
Source code in ultralytics/engine/results.py
def verbose(self):
    """
    Returns a log string for each task in the results, detailing detection and classification outcomes.

    This method generates a human-readable string summarizing the detection and classification results. It includes
    the number of detections for each class and the top probabilities for classification tasks.

    Returns:
        (str): A formatted string containing a summary of the results. For detection tasks, it includes the
            number of detections per class. For classification tasks, it includes the top 5 class probabilities.

    Examples:
        >>> results = model("path/to/image.jpg")
        >>> for result in results:
        ...     print(result.verbose())
        2 persons, 1 car, 3 traffic lights,
        dog 0.92, cat 0.78, horse 0.64,

    Notes:
        - If there are no detections, the method returns "(no detections), " for detection tasks.
        - For classification tasks, it returns the top 5 class probabilities and their corresponding class names.
        - The returned string is comma-separated and ends with a comma and a space.
    """
    log_string = ""
    probs = self.probs
    boxes = self.boxes
    if len(self) == 0:
        return log_string if probs is not None else f"{log_string}(no detections), "
    if probs is not None:
        log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
    if boxes:
        for c in boxes.cls.unique():
            n = (boxes.cls == c).sum()  # detections per class
            log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
    return log_string





ultralytics.engine.results.Boxes

Boxes(boxes, orig_shape)

Bases: BaseTensor

A class for managing and manipulating detection boxes.

This class provides functionality for handling detection boxes, including their coordinates, confidence scores, class labels, and optional tracking IDs. It supports various box formats and offers methods for easy manipulation and conversion between different coordinate systems.

Attributes:

Name Type Description
data Tensor | ndarray

The raw tensor containing detection boxes and associated data.

orig_shape Tuple[int, int]

The original image dimensions (height, width).

is_track bool

Indicates whether tracking IDs are included in the box data.

xyxy Tensor | ndarray

Boxes in [x1, y1, x2, y2] format.

conf Tensor | ndarray

Confidence scores for each box.

cls Tensor | ndarray

Class labels for each box.

id Tensor | ndarray

Tracking IDs for each box (if available).

xywh Tensor | ndarray

Boxes in [x, y, width, height] format.

xyxyn Tensor | ndarray

Normalized [x1, y1, x2, y2] boxes relative to orig_shape.

xywhn Tensor | ndarray

Normalized [x, y, width, height] boxes relative to orig_shape.

Methods:

Name Description
cpu

Returns a copy of the object with all tensors on CPU memory.

numpy

Returns a copy of the object with all tensors as numpy arrays.

cuda

Returns a copy of the object with all tensors on GPU memory.

to

Returns a copy of the object with tensors on specified device and dtype.

Examples:

>>> import torch
>>> boxes_data = torch.tensor([[100, 50, 150, 100, 0.9, 0], [200, 150, 300, 250, 0.8, 1]])
>>> orig_shape = (480, 640)  # height, width
>>> boxes = Boxes(boxes_data, orig_shape)
>>> print(boxes.xyxy)
>>> print(boxes.conf)
>>> print(boxes.cls)
>>> print(boxes.xywhn)

This class manages detection boxes, providing easy access and manipulation of box coordinates, confidence scores, class identifiers, and optional tracking IDs. It supports multiple formats for box coordinates, including both absolute and normalized forms.

Parameters:

Name Type Description Default
boxes Tensor | ndarray

A tensor or numpy array with detection boxes of shape (num_boxes, 6) or (num_boxes, 7). Columns should contain [x1, y1, x2, y2, confidence, class, (optional) track_id].

required
orig_shape Tuple[int, int]

The original image shape as (height, width). Used for normalization.

required

Attributes:

Name Type Description
data Tensor

The raw tensor containing detection boxes and their associated data.

orig_shape Tuple[int, int]

The original image size, used for normalization.

is_track bool

Indicates whether tracking IDs are included in the box data.

Examples:

>>> import torch
>>> boxes = torch.tensor([[100, 50, 150, 100, 0.9, 0]])
>>> orig_shape = (480, 640)
>>> detection_boxes = Boxes(boxes, orig_shape)
>>> print(detection_boxes.xyxy)
tensor([[100.,  50., 150., 100.]])
Source code in ultralytics/engine/results.py
def __init__(self, boxes, orig_shape) -> None:
    """
    Initialize the Boxes class with detection box data and the original image shape.

    This class manages detection boxes, providing easy access and manipulation of box coordinates,
    confidence scores, class identifiers, and optional tracking IDs. It supports multiple formats
    for box coordinates, including both absolute and normalized forms.

    Args:
        boxes (torch.Tensor | np.ndarray): A tensor or numpy array with detection boxes of shape
            (num_boxes, 6) or (num_boxes, 7). Columns should contain
            [x1, y1, x2, y2, confidence, class, (optional) track_id].
        orig_shape (Tuple[int, int]): The original image shape as (height, width). Used for normalization.

    Attributes:
        data (torch.Tensor): The raw tensor containing detection boxes and their associated data.
        orig_shape (Tuple[int, int]): The original image size, used for normalization.
        is_track (bool): Indicates whether tracking IDs are included in the box data.

    Examples:
        >>> import torch
        >>> boxes = torch.tensor([[100, 50, 150, 100, 0.9, 0]])
        >>> orig_shape = (480, 640)
        >>> detection_boxes = Boxes(boxes, orig_shape)
        >>> print(detection_boxes.xyxy)
        tensor([[100.,  50., 150., 100.]])
    """
    if boxes.ndim == 1:
        boxes = boxes[None, :]
    n = boxes.shape[-1]
    assert n in {6, 7}, f"expected 6 or 7 values but got {n}"  # xyxy, track_id, conf, cls
    super().__init__(boxes, orig_shape)
    self.is_track = n == 7
    self.orig_shape = orig_shape

cls property

cls

Returns the class ID tensor representing category predictions for each bounding box.

Returns:

Type Description
Tensor | ndarray

A tensor or numpy array containing the class IDs for each detection box. The shape is (N,), where N is the number of boxes.

Examples:

>>> results = model("image.jpg")
>>> boxes = results[0].boxes
>>> class_ids = boxes.cls
>>> print(class_ids)  # tensor([0., 2., 1.])

conf property

conf

Returns the confidence scores for each detection box.

Returns:

Type Description
Tensor | ndarray

A 1D tensor or array containing confidence scores for each detection, with shape (N,) where N is the number of detections.

Examples:

>>> boxes = Boxes(torch.tensor([[10, 20, 30, 40, 0.9, 0]]), orig_shape=(100, 100))
>>> conf_scores = boxes.conf
>>> print(conf_scores)
tensor([0.9000])

id property

id

Returns the tracking IDs for each detection box if available.

Returns:

Type Description
Tensor | None

A tensor containing tracking IDs for each box if tracking is enabled, otherwise None. Shape is (N,) where N is the number of boxes.

Examples:

>>> results = model.track("path/to/video.mp4")
>>> for result in results:
...     boxes = result.boxes
...     if boxes.is_track:
...         track_ids = boxes.id
...         print(f"Tracking IDs: {track_ids}")
...     else:
...         print("Tracking is not enabled for these boxes.")
Notes
  • This property is only available when tracking is enabled (i.e., when is_track is True).
  • The tracking IDs are typically used to associate detections across multiple frames in video analysis.

xywh cached property

xywh

Convert bounding boxes from [x1, y1, x2, y2] format to [x, y, width, height] format.

Returns:

Type Description
Tensor | ndarray

Boxes in [x_center, y_center, width, height] format, where x_center, y_center are the coordinates of the center point of the bounding box, width, height are the dimensions of the bounding box and the shape of the returned tensor is (N, 4), where N is the number of boxes.

Examples:

>>> boxes = Boxes(torch.tensor([[100, 50, 150, 100], [200, 150, 300, 250]]), orig_shape=(480, 640))
>>> xywh = boxes.xywh
>>> print(xywh)
tensor([[100.0000,  50.0000,  50.0000,  50.0000],
        [200.0000, 150.0000, 100.0000, 100.0000]])

xywhn cached property

xywhn

Returns normalized bounding boxes in [x, y, width, height] format.

This property calculates and returns the normalized bounding box coordinates in the format [x_center, y_center, width, height], where all values are relative to the original image dimensions.

Returns:

Type Description
Tensor | ndarray

Normalized bounding boxes with shape (N, 4), where N is the number of boxes. Each row contains [x_center, y_center, width, height] values normalized to [0, 1] based on the original image dimensions.

Examples:

>>> boxes = Boxes(torch.tensor([[100, 50, 150, 100, 0.9, 0]]), orig_shape=(480, 640))
>>> normalized = boxes.xywhn
>>> print(normalized)
tensor([[0.1953, 0.1562, 0.0781, 0.1042]])

xyxy property

xyxy

Returns bounding boxes in [x1, y1, x2, y2] format.

Returns:

Type Description
Tensor | ndarray

A tensor or numpy array of shape (n, 4) containing bounding box coordinates in [x1, y1, x2, y2] format, where n is the number of boxes.

Examples:

>>> results = model("image.jpg")
>>> boxes = results[0].boxes
>>> xyxy = boxes.xyxy
>>> print(xyxy)

xyxyn cached property

xyxyn

Returns normalized bounding box coordinates relative to the original image size.

This property calculates and returns the bounding box coordinates in [x1, y1, x2, y2] format, normalized to the range [0, 1] based on the original image dimensions.

Returns:

Type Description
Tensor | ndarray

Normalized bounding box coordinates with shape (N, 4), where N is the number of boxes. Each row contains [x1, y1, x2, y2] values normalized to [0, 1].

Examples:

>>> boxes = Boxes(torch.tensor([[100, 50, 300, 400, 0.9, 0]]), orig_shape=(480, 640))
>>> normalized = boxes.xyxyn
>>> print(normalized)
tensor([[0.1562, 0.1042, 0.4688, 0.8333]])





ultralytics.engine.results.Masks

Masks(masks, orig_shape)

Bases: BaseTensor

A class for storing and manipulating detection masks.

This class extends BaseTensor and provides functionality for handling segmentation masks, including methods for converting between pixel and normalized coordinates.

Attributes:

Name Type Description
data Tensor | ndarray

The raw tensor or array containing mask data.

orig_shape tuple

Original image shape in (height, width) format.

xy List[ndarray]

A list of segments in pixel coordinates.

xyn List[ndarray]

A list of normalized segments.

Methods:

Name Description
cpu

Returns a copy of the Masks object with the mask tensor on CPU memory.

numpy

Returns a copy of the Masks object with the mask tensor as a numpy array.

cuda

Returns a copy of the Masks object with the mask tensor on GPU memory.

to

Returns a copy of the Masks object with the mask tensor on specified device and dtype.

Examples:

>>> masks_data = torch.rand(1, 160, 160)
>>> orig_shape = (720, 1280)
>>> masks = Masks(masks_data, orig_shape)
>>> pixel_coords = masks.xy
>>> normalized_coords = masks.xyn

Parameters:

Name Type Description Default
masks Tensor | ndarray

Detection masks with shape (num_masks, height, width).

required
orig_shape tuple

The original image shape as (height, width). Used for normalization.

required

Examples:

>>> import torch
>>> from ultralytics.engine.results import Masks
>>> masks = torch.rand(10, 160, 160)  # 10 masks of 160x160 resolution
>>> orig_shape = (720, 1280)  # Original image shape
>>> mask_obj = Masks(masks, orig_shape)
Source code in ultralytics/engine/results.py
def __init__(self, masks, orig_shape) -> None:
    """
    Initialize the Masks class with detection mask data and the original image shape.

    Args:
        masks (torch.Tensor | np.ndarray): Detection masks with shape (num_masks, height, width).
        orig_shape (tuple): The original image shape as (height, width). Used for normalization.

    Examples:
        >>> import torch
        >>> from ultralytics.engine.results import Masks
        >>> masks = torch.rand(10, 160, 160)  # 10 masks of 160x160 resolution
        >>> orig_shape = (720, 1280)  # Original image shape
        >>> mask_obj = Masks(masks, orig_shape)
    """
    if masks.ndim == 2:
        masks = masks[None, :]
    super().__init__(masks, orig_shape)

xy cached property

xy

Returns the [x, y] pixel coordinates for each segment in the mask tensor.

This property calculates and returns a list of pixel coordinates for each segmentation mask in the Masks object. The coordinates are scaled to match the original image dimensions.

Returns:

Type Description
List[ndarray]

A list of numpy arrays, where each array contains the [x, y] pixel coordinates for a single segmentation mask. Each array has shape (N, 2), where N is the number of points in the segment.

Examples:

>>> results = model("image.jpg")
>>> masks = results[0].masks
>>> xy_coords = masks.xy
>>> print(len(xy_coords))  # Number of masks
>>> print(xy_coords[0].shape)  # Shape of first mask's coordinates

xyn cached property

xyn

Returns normalized xy-coordinates of the segmentation masks.

This property calculates and caches the normalized xy-coordinates of the segmentation masks. The coordinates are normalized relative to the original image shape.

Returns:

Type Description
List[ndarray]

A list of numpy arrays, where each array contains the normalized xy-coordinates of a single segmentation mask. Each array has shape (N, 2), where N is the number of points in the mask contour.

Examples:

>>> results = model("image.jpg")
>>> masks = results[0].masks
>>> normalized_coords = masks.xyn
>>> print(normalized_coords[0])  # Normalized coordinates of the first mask





ultralytics.engine.results.Keypoints

Keypoints(keypoints, orig_shape)

Bases: BaseTensor

A class for storing and manipulating detection keypoints.

This class encapsulates functionality for handling keypoint data, including coordinate manipulation, normalization, and confidence values.

Attributes:

Name Type Description
data Tensor

The raw tensor containing keypoint data.

orig_shape Tuple[int, int]

The original image dimensions (height, width).

has_visible bool

Indicates whether visibility information is available for keypoints.

xy Tensor

Keypoint coordinates in [x, y] format.

xyn Tensor

Normalized keypoint coordinates in [x, y] format, relative to orig_shape.

conf Tensor

Confidence values for each keypoint, if available.

Methods:

Name Description
cpu

Returns a copy of the keypoints tensor on CPU memory.

numpy

Returns a copy of the keypoints tensor as a numpy array.

cuda

Returns a copy of the keypoints tensor on GPU memory.

to

Returns a copy of the keypoints tensor with specified device and dtype.

Examples:

>>> import torch
>>> from ultralytics.engine.results import Keypoints
>>> keypoints_data = torch.rand(1, 17, 3)  # 1 detection, 17 keypoints, (x, y, conf)
>>> orig_shape = (480, 640)  # Original image shape (height, width)
>>> keypoints = Keypoints(keypoints_data, orig_shape)
>>> print(keypoints.xy.shape)  # Access xy coordinates
>>> print(keypoints.conf)  # Access confidence values
>>> keypoints_cpu = keypoints.cpu()  # Move keypoints to CPU

This method processes the input keypoints tensor, handling both 2D and 3D formats. For 3D tensors (x, y, confidence), it masks out low-confidence keypoints by setting their coordinates to zero.

Parameters:

Name Type Description Default
keypoints Tensor

A tensor containing keypoint data. Shape can be either: - (num_objects, num_keypoints, 2) for x, y coordinates only - (num_objects, num_keypoints, 3) for x, y coordinates and confidence scores

required
orig_shape Tuple[int, int]

The original image dimensions (height, width).

required

Examples:

>>> kpts = torch.rand(1, 17, 3)  # 1 object, 17 keypoints (COCO format), x,y,conf
>>> orig_shape = (720, 1280)  # Original image height, width
>>> keypoints = Keypoints(kpts, orig_shape)
Source code in ultralytics/engine/results.py
@smart_inference_mode()  # avoid keypoints < conf in-place error
def __init__(self, keypoints, orig_shape) -> None:
    """
    Initializes the Keypoints object with detection keypoints and original image dimensions.

    This method processes the input keypoints tensor, handling both 2D and 3D formats. For 3D tensors
    (x, y, confidence), it masks out low-confidence keypoints by setting their coordinates to zero.

    Args:
        keypoints (torch.Tensor): A tensor containing keypoint data. Shape can be either:
            - (num_objects, num_keypoints, 2) for x, y coordinates only
            - (num_objects, num_keypoints, 3) for x, y coordinates and confidence scores
        orig_shape (Tuple[int, int]): The original image dimensions (height, width).

    Examples:
        >>> kpts = torch.rand(1, 17, 3)  # 1 object, 17 keypoints (COCO format), x,y,conf
        >>> orig_shape = (720, 1280)  # Original image height, width
        >>> keypoints = Keypoints(kpts, orig_shape)
    """
    if keypoints.ndim == 2:
        keypoints = keypoints[None, :]
    if keypoints.shape[2] == 3:  # x, y, conf
        mask = keypoints[..., 2] < 0.5  # points with conf < 0.5 (not visible)
        keypoints[..., :2][mask] = 0
    super().__init__(keypoints, orig_shape)
    self.has_visible = self.data.shape[-1] == 3

conf cached property

conf

Returns confidence values for each keypoint.

Returns:

Type Description
Tensor | None

A tensor containing confidence scores for each keypoint if available, otherwise None. Shape is (num_detections, num_keypoints) for batched data or (num_keypoints,) for single detection.

Examples:

>>> keypoints = Keypoints(torch.rand(1, 17, 3), orig_shape=(640, 640))  # 1 detection, 17 keypoints
>>> conf = keypoints.conf
>>> print(conf.shape)  # torch.Size([1, 17])

xy cached property

xy

Returns x, y coordinates of keypoints.

Returns:

Type Description
Tensor

A tensor containing the x, y coordinates of keypoints with shape (N, K, 2), where N is the number of detections and K is the number of keypoints per detection.

Examples:

>>> results = model("image.jpg")
>>> keypoints = results[0].keypoints
>>> xy = keypoints.xy
>>> print(xy.shape)  # (N, K, 2)
>>> print(xy[0])  # x, y coordinates of keypoints for first detection
Notes
  • The returned coordinates are in pixel units relative to the original image dimensions.
  • If keypoints were initialized with confidence values, only keypoints with confidence >= 0.5 are returned.
  • This property uses LRU caching to improve performance on repeated access.

xyn cached property

xyn

Returns normalized coordinates (x, y) of keypoints relative to the original image size.

Returns:

Type Description
Tensor | ndarray

A tensor or array of shape (N, K, 2) containing normalized keypoint coordinates, where N is the number of instances, K is the number of keypoints, and the last dimension contains [x, y] values in the range [0, 1].

Examples:

>>> keypoints = Keypoints(torch.rand(1, 17, 2), orig_shape=(480, 640))
>>> normalized_kpts = keypoints.xyn
>>> print(normalized_kpts.shape)
torch.Size([1, 17, 2])





ultralytics.engine.results.Probs

Probs(probs, orig_shape=None)

Bases: BaseTensor

A class for storing and manipulating classification probabilities.

This class extends BaseTensor and provides methods for accessing and manipulating classification probabilities, including top-1 and top-5 predictions.

Attributes:

Name Type Description
data Tensor | ndarray

The raw tensor or array containing classification probabilities.

orig_shape tuple | None

The original image shape as (height, width). Not used in this class.

top1 int

Index of the class with the highest probability.

top5 List[int]

Indices of the top 5 classes by probability.

top1conf Tensor | ndarray

Confidence score of the top 1 class.

top5conf Tensor | ndarray

Confidence scores of the top 5 classes.

Methods:

Name Description
cpu

Returns a copy of the probabilities tensor on CPU memory.

numpy

Returns a copy of the probabilities tensor as a numpy array.

cuda

Returns a copy of the probabilities tensor on GPU memory.

to

Returns a copy of the probabilities tensor with specified device and dtype.

Examples:

>>> probs = torch.tensor([0.1, 0.3, 0.6])
>>> p = Probs(probs)
>>> print(p.top1)
2
>>> print(p.top5)
[2, 1, 0]
>>> print(p.top1conf)
tensor(0.6000)
>>> print(p.top5conf)
tensor([0.6000, 0.3000, 0.1000])

This class stores and manages classification probabilities, providing easy access to top predictions and their confidences.

Parameters:

Name Type Description Default
probs Tensor | ndarray

A 1D tensor or array of classification probabilities.

required
orig_shape tuple | None

The original image shape as (height, width). Not used in this class but kept for consistency with other result classes.

None

Attributes:

Name Type Description
data Tensor | ndarray

The raw tensor or array containing classification probabilities.

top1 int

Index of the top 1 class.

top5 List[int]

Indices of the top 5 classes.

top1conf Tensor | ndarray

Confidence of the top 1 class.

top5conf Tensor | ndarray

Confidences of the top 5 classes.

Examples:

>>> import torch
>>> probs = torch.tensor([0.1, 0.3, 0.2, 0.4])
>>> p = Probs(probs)
>>> print(p.top1)
3
>>> print(p.top1conf)
tensor(0.4000)
>>> print(p.top5)
[3, 1, 2, 0]
Source code in ultralytics/engine/results.py
def __init__(self, probs, orig_shape=None) -> None:
    """
    Initialize the Probs class with classification probabilities.

    This class stores and manages classification probabilities, providing easy access to top predictions and their
    confidences.

    Args:
        probs (torch.Tensor | np.ndarray): A 1D tensor or array of classification probabilities.
        orig_shape (tuple | None): The original image shape as (height, width). Not used in this class but kept for
            consistency with other result classes.

    Attributes:
        data (torch.Tensor | np.ndarray): The raw tensor or array containing classification probabilities.
        top1 (int): Index of the top 1 class.
        top5 (List[int]): Indices of the top 5 classes.
        top1conf (torch.Tensor | np.ndarray): Confidence of the top 1 class.
        top5conf (torch.Tensor | np.ndarray): Confidences of the top 5 classes.

    Examples:
        >>> import torch
        >>> probs = torch.tensor([0.1, 0.3, 0.2, 0.4])
        >>> p = Probs(probs)
        >>> print(p.top1)
        3
        >>> print(p.top1conf)
        tensor(0.4000)
        >>> print(p.top5)
        [3, 1, 2, 0]
    """
    super().__init__(probs, orig_shape)

top1 cached property

top1

Returns the index of the class with the highest probability.

Returns:

Type Description
int

Index of the class with the highest probability.

Examples:

>>> probs = Probs(torch.tensor([0.1, 0.3, 0.6]))
>>> probs.top1
2

top1conf cached property

top1conf

Returns the confidence score of the highest probability class.

This property retrieves the confidence score (probability) of the class with the highest predicted probability from the classification results.

Returns:

Type Description
Tensor | ndarray

A tensor containing the confidence score of the top 1 class.

Examples:

>>> results = model("image.jpg")  # classify an image
>>> probs = results[0].probs  # get classification probabilities
>>> top1_confidence = probs.top1conf  # get confidence of top 1 class
>>> print(f"Top 1 class confidence: {top1_confidence.item():.4f}")

top5 cached property

top5

Returns the indices of the top 5 class probabilities.

Returns:

Type Description
List[int]

A list containing the indices of the top 5 class probabilities, sorted in descending order.

Examples:

>>> probs = Probs(torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5]))
>>> print(probs.top5)
[4, 3, 2, 1, 0]

top5conf cached property

top5conf

Returns confidence scores for the top 5 classification predictions.

This property retrieves the confidence scores corresponding to the top 5 class probabilities predicted by the model. It provides a quick way to access the most likely class predictions along with their associated confidence levels.

Returns:

Type Description
Tensor | ndarray

A tensor or array containing the confidence scores for the top 5 predicted classes, sorted in descending order of probability.

Examples:

>>> results = model("image.jpg")
>>> probs = results[0].probs
>>> top5_conf = probs.top5conf
>>> print(top5_conf)  # Prints confidence scores for top 5 classes





ultralytics.engine.results.OBB

OBB(boxes, orig_shape)

Bases: BaseTensor

A class for storing and manipulating Oriented Bounding Boxes (OBB).

This class provides functionality to handle oriented bounding boxes, including conversion between different formats, normalization, and access to various properties of the boxes.

Attributes:

Name Type Description
data Tensor

The raw OBB tensor containing box coordinates and associated data.

orig_shape tuple

Original image size as (height, width).

is_track bool

Indicates whether tracking IDs are included in the box data.

xywhr Tensor | ndarray

Boxes in [x_center, y_center, width, height, rotation] format.

conf Tensor | ndarray

Confidence scores for each box.

cls Tensor | ndarray

Class labels for each box.

id Tensor | ndarray

Tracking IDs for each box, if available.

xyxyxyxy Tensor | ndarray

Boxes in 8-point [x1, y1, x2, y2, x3, y3, x4, y4] format.

xyxyxyxyn Tensor | ndarray

Normalized 8-point coordinates relative to orig_shape.

xyxy Tensor | ndarray

Axis-aligned bounding boxes in [x1, y1, x2, y2] format.

Methods:

Name Description
cpu

Returns a copy of the OBB object with all tensors on CPU memory.

numpy

Returns a copy of the OBB object with all tensors as numpy arrays.

cuda

Returns a copy of the OBB object with all tensors on GPU memory.

to

Returns a copy of the OBB object with tensors on specified device and dtype.

Examples:

>>> boxes = torch.tensor([[100, 50, 150, 100, 30, 0.9, 0]])  # xywhr, conf, cls
>>> obb = OBB(boxes, orig_shape=(480, 640))
>>> print(obb.xyxyxyxy)
>>> print(obb.conf)
>>> print(obb.cls)

This class stores and manipulates Oriented Bounding Boxes (OBB) for object detection tasks. It provides various properties and methods to access and transform the OBB data.

Parameters:

Name Type Description Default
boxes Tensor | ndarray

A tensor or numpy array containing the detection boxes, with shape (num_boxes, 7) or (num_boxes, 8). The last two columns contain confidence and class values. If present, the third last column contains track IDs, and the fifth column contains rotation.

required
orig_shape Tuple[int, int]

Original image size, in the format (height, width).

required

Attributes:

Name Type Description
data Tensor | ndarray

The raw OBB tensor.

orig_shape Tuple[int, int]

The original image shape.

is_track bool

Whether the boxes include tracking IDs.

Raises:

Type Description
AssertionError

If the number of values per box is not 7 or 8.

Examples:

>>> import torch
>>> boxes = torch.rand(3, 7)  # 3 boxes with 7 values each
>>> orig_shape = (640, 480)
>>> obb = OBB(boxes, orig_shape)
>>> print(obb.xywhr)  # Access the boxes in xywhr format
Source code in ultralytics/engine/results.py
def __init__(self, boxes, orig_shape) -> None:
    """
    Initialize an OBB (Oriented Bounding Box) instance with oriented bounding box data and original image shape.

    This class stores and manipulates Oriented Bounding Boxes (OBB) for object detection tasks. It provides
    various properties and methods to access and transform the OBB data.

    Args:
        boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
            with shape (num_boxes, 7) or (num_boxes, 8). The last two columns contain confidence and class values.
            If present, the third last column contains track IDs, and the fifth column contains rotation.
        orig_shape (Tuple[int, int]): Original image size, in the format (height, width).

    Attributes:
        data (torch.Tensor | numpy.ndarray): The raw OBB tensor.
        orig_shape (Tuple[int, int]): The original image shape.
        is_track (bool): Whether the boxes include tracking IDs.

    Raises:
        AssertionError: If the number of values per box is not 7 or 8.

    Examples:
        >>> import torch
        >>> boxes = torch.rand(3, 7)  # 3 boxes with 7 values each
        >>> orig_shape = (640, 480)
        >>> obb = OBB(boxes, orig_shape)
        >>> print(obb.xywhr)  # Access the boxes in xywhr format
    """
    if boxes.ndim == 1:
        boxes = boxes[None, :]
    n = boxes.shape[-1]
    assert n in {7, 8}, f"expected 7 or 8 values but got {n}"  # xywh, rotation, track_id, conf, cls
    super().__init__(boxes, orig_shape)
    self.is_track = n == 8
    self.orig_shape = orig_shape

cls property

cls

Returns the class values of the oriented bounding boxes.

Returns:

Type Description
Tensor | ndarray

A tensor or numpy array containing the class values for each oriented bounding box. The shape is (N,), where N is the number of boxes.

Examples:

>>> results = model("image.jpg")
>>> result = results[0]
>>> obb = result.obb
>>> class_values = obb.cls
>>> print(class_values)

conf property

conf

Returns the confidence scores for Oriented Bounding Boxes (OBBs).

This property retrieves the confidence values associated with each OBB detection. The confidence score represents the model's certainty in the detection.

Returns:

Type Description
Tensor | ndarray

A tensor or numpy array of shape (N,) containing confidence scores for N detections, where each score is in the range [0, 1].

Examples:

>>> results = model("image.jpg")
>>> obb_result = results[0].obb
>>> confidence_scores = obb_result.conf
>>> print(confidence_scores)

id property

id

Returns the tracking IDs of the oriented bounding boxes (if available).

Returns:

Type Description
Tensor | ndarray | None

A tensor or numpy array containing the tracking IDs for each oriented bounding box. Returns None if tracking IDs are not available.

Examples:

>>> results = model("image.jpg", tracker=True)  # Run inference with tracking
>>> for result in results:
...     if result.obb is not None:
...         track_ids = result.obb.id
...         if track_ids is not None:
...             print(f"Tracking IDs: {track_ids}")

xywhr property

xywhr

Returns boxes in [x_center, y_center, width, height, rotation] format.

Returns:

Type Description
Tensor | ndarray

A tensor or numpy array containing the oriented bounding boxes with format [x_center, y_center, width, height, rotation]. The shape is (N, 5) where N is the number of boxes.

Examples:

>>> results = model("image.jpg")
>>> obb = results[0].obb
>>> xywhr = obb.xywhr
>>> print(xywhr.shape)
torch.Size([3, 5])

xyxy cached property

xyxy

Converts oriented bounding boxes (OBB) to axis-aligned bounding boxes in xyxy format.

This property calculates the minimal enclosing rectangle for each oriented bounding box and returns it in xyxy format (x1, y1, x2, y2). This is useful for operations that require axis-aligned bounding boxes, such as IoU calculation with non-rotated boxes.

Returns:

Type Description
Tensor | ndarray

Axis-aligned bounding boxes in xyxy format with shape (N, 4), where N is the number of boxes. Each row contains [x1, y1, x2, y2] coordinates.

Examples:

>>> import torch
>>> from ultralytics import YOLO
>>> model = YOLO("yolov8n-obb.pt")
>>> results = model("path/to/image.jpg")
>>> for result in results:
...     obb = result.obb
...     if obb is not None:
...         xyxy_boxes = obb.xyxy
...         print(xyxy_boxes.shape)  # (N, 4)
Notes
  • This method approximates the OBB by its minimal enclosing rectangle.
  • The returned format is compatible with standard object detection metrics and visualization tools.
  • The property uses caching to improve performance for repeated access.

xyxyxyxy cached property

xyxyxyxy

Converts OBB format to 8-point (xyxyxyxy) coordinate format for rotated bounding boxes.

Returns:

Type Description
Tensor | ndarray

Rotated bounding boxes in xyxyxyxy format with shape (N, 4, 2), where N is the number of boxes. Each box is represented by 4 points (x, y), starting from the top-left corner and moving clockwise.

Examples:

>>> obb = OBB(torch.tensor([[100, 100, 50, 30, 0.5, 0.9, 0]]), orig_shape=(640, 640))
>>> xyxyxyxy = obb.xyxyxyxy
>>> print(xyxyxyxy.shape)
torch.Size([1, 4, 2])

xyxyxyxyn cached property

xyxyxyxyn

Converts rotated bounding boxes to normalized xyxyxyxy format.

Returns:

Type Description
Tensor | ndarray

Normalized rotated bounding boxes in xyxyxyxy format with shape (N, 4, 2), where N is the number of boxes. Each box is represented by 4 points (x, y), normalized relative to the original image dimensions.

Examples:

>>> obb = OBB(torch.rand(10, 7), orig_shape=(640, 480))  # 10 random OBBs
>>> normalized_boxes = obb.xyxyxyxyn
>>> print(normalized_boxes.shape)
torch.Size([10, 4, 2])




📅 Created 10 months ago ✏️ Updated 6 days ago