Reference for ultralytics/utils/metrics.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/metrics.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.utils.metrics.ConfusionMatrix
ConfusionMatrix(names: List[str] = [], task: str = 'detect')
Bases: DataExportMixin
A class for calculating and updating a confusion matrix for object detection and classification tasks.
Attributes:
Name | Type | Description |
---|---|---|
task |
str
|
The type of task, either 'detect' or 'classify'. |
matrix |
ndarray
|
The confusion matrix, with dimensions depending on the task. |
nc |
int
|
The number of category. |
names |
List[str]
|
The names of the classes, used as labels on the plot. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
names
|
List[str]
|
Names of classes, used as labels on the plot. |
[]
|
task
|
str
|
Type of task, either 'detect' or 'classify'. |
'detect'
|
Source code in ultralytics/utils/metrics.py
323 324 325 326 327 328 329 330 331 332 333 334 |
|
matrix
matrix()
Return the confusion matrix.
Source code in ultralytics/utils/metrics.py
410 411 412 |
|
plot
plot(normalize: bool = True, save_dir: str = '', on_plot=None)
Plot the confusion matrix using matplotlib and save it to a file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
normalize
|
bool
|
Whether to normalize the confusion matrix. |
True
|
save_dir
|
str
|
Directory where the plot will be saved. |
''
|
on_plot
|
callable
|
An optional callback to pass plots path and data when they are rendered. |
None
|
Source code in ultralytics/utils/metrics.py
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
|
print
print()
Print the confusion matrix to the console.
Source code in ultralytics/utils/metrics.py
502 503 504 505 |
|
process_batch
process_batch(
detections: Dict[str, Tensor],
batch: Dict[str, Any],
conf: float = 0.25,
iou_thres: float = 0.45,
) -> None
Update confusion matrix for object detection task.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
detections
|
Dict[str, Tensor]
|
Dictionary containing detected bounding boxes and their associated information. Should contain 'cls', 'conf', and 'bboxes' keys, where 'bboxes' can be Array[N, 4] for regular boxes or Array[N, 5] for OBB with angle. |
required |
batch
|
Dict[str, Any]
|
Batch dictionary containing ground truth data with 'bboxes' (Array[M, 4]| Array[M, 5]) and 'cls' (Array[M]) keys, where M is the number of ground truth objects. |
required |
conf
|
float
|
Confidence threshold for detections. |
0.25
|
iou_thres
|
float
|
IoU threshold for matching detections to ground truth. |
0.45
|
Source code in ultralytics/utils/metrics.py
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
|
process_cls_preds
process_cls_preds(preds, targets)
Update confusion matrix for classification task.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
preds
|
Array[N, min(nc, 5)]
|
Predicted class labels. |
required |
targets
|
Array[N, 1]
|
Ground truth class labels. |
required |
Source code in ultralytics/utils/metrics.py
336 337 338 339 340 341 342 343 344 345 346 |
|
summary
summary(normalize: bool = False, decimals: int = 5) -> List[Dict[str, float]]
Generate a summarized representation of the confusion matrix as a list of dictionaries, with optional normalization. This is useful for exporting the matrix to various formats such as CSV, XML, HTML, JSON, or SQL.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
normalize
|
bool
|
Whether to normalize the confusion matrix values. |
False
|
decimals
|
int
|
Number of decimal places to round the output values to. |
5
|
Returns:
Type | Description |
---|---|
List[Dict[str, float]]
|
A list of dictionaries, each representing one predicted class with corresponding values for all actual classes. |
Examples:
>>> results = model.val(data="coco8.yaml", plots=True)
>>> cm_dict = results.confusion_matrix.summary(normalize=True, decimals=5)
>>> print(cm_dict)
Source code in ultralytics/utils/metrics.py
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 |
|
tp_fp
tp_fp() -> Tuple[np.ndarray, np.ndarray]
Return true positives and false positives.
Returns:
Name | Type | Description |
---|---|---|
tp |
ndarray
|
True positives. |
fp |
ndarray
|
False positives. |
Source code in ultralytics/utils/metrics.py
414 415 416 417 418 419 420 421 422 423 424 425 |
|
ultralytics.utils.metrics.Metric
Metric()
Bases: SimpleClass
Class for computing evaluation metrics for Ultralytics YOLO models.
Attributes:
Name | Type | Description |
---|---|---|
p |
list
|
Precision for each class. Shape: (nc,). |
r |
list
|
Recall for each class. Shape: (nc,). |
f1 |
list
|
F1 score for each class. Shape: (nc,). |
all_ap |
list
|
AP scores for all classes and all IoU thresholds. Shape: (nc, 10). |
ap_class_index |
list
|
Index of class for each AP score. Shape: (nc,). |
nc |
int
|
Number of classes. |
Methods:
Name | Description |
---|---|
ap50 |
AP at IoU threshold of 0.5 for all classes. Returns: List of AP scores. Shape: (nc,) or []. |
ap |
AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: List of AP scores. Shape: (nc,) or []. |
mp |
Mean precision of all classes. Returns: Float. |
mr |
Mean recall of all classes. Returns: Float. |
map50 |
Mean AP at IoU threshold of 0.5 for all classes. Returns: Float. |
map75 |
Mean AP at IoU threshold of 0.75 for all classes. Returns: Float. |
map |
Mean AP at IoU thresholds from 0.5 to 0.95 for all classes. Returns: Float. |
mean_results |
Mean of results, returns mp, mr, map50, map. |
class_result |
Class-aware result, returns p[i], r[i], ap50[i], ap[i]. |
maps |
mAP of each class. Returns: Array of mAP scores, shape: (nc,). |
fitness |
Model fitness as a weighted combination of metrics. Returns: Float. |
update |
Update metric attributes with new evaluation results. |
Source code in ultralytics/utils/metrics.py
799 800 801 802 803 804 805 806 |
|
ap
property
ap: Union[ndarray, List]
Return the Average Precision (AP) at an IoU threshold of 0.5-0.95 for all classes.
Returns:
Type | Description |
---|---|
ndarray | list
|
Array of shape (nc,) with AP50-95 values per class, or an empty list if not available. |
ap50
property
ap50: Union[ndarray, List]
Return the Average Precision (AP) at an IoU threshold of 0.5 for all classes.
Returns:
Type | Description |
---|---|
ndarray | list
|
Array of shape (nc,) with AP50 values per class, or an empty list if not available. |
curves
property
curves: List
Return a list of curves for accessing specific metrics curves.
curves_results
property
curves_results: List[List]
Return a list of curves for accessing specific metrics curves.
map
property
map: float
Return the mean Average Precision (mAP) over IoU thresholds of 0.5 - 0.95 in steps of 0.05.
Returns:
Type | Description |
---|---|
float
|
The mAP over IoU thresholds of 0.5 - 0.95 in steps of 0.05. |
map50
property
map50: float
Return the mean Average Precision (mAP) at an IoU threshold of 0.5.
Returns:
Type | Description |
---|---|
float
|
The mAP at an IoU threshold of 0.5. |
map75
property
map75: float
Return the mean Average Precision (mAP) at an IoU threshold of 0.75.
Returns:
Type | Description |
---|---|
float
|
The mAP at an IoU threshold of 0.75. |
maps
property
maps: ndarray
Return mAP of each class.
mp
property
mp: float
Return the Mean Precision of all classes.
Returns:
Type | Description |
---|---|
float
|
The mean precision of all classes. |
mr
property
mr: float
Return the Mean Recall of all classes.
Returns:
Type | Description |
---|---|
float
|
The mean recall of all classes. |
class_result
class_result(i: int) -> Tuple[float, float, float, float]
Return class-aware result, p[i], r[i], ap50[i], ap[i].
Source code in ultralytics/utils/metrics.py
882 883 884 |
|
fitness
fitness() -> float
Return model fitness as a weighted combination of metrics.
Source code in ultralytics/utils/metrics.py
894 895 896 897 |
|
mean_results
mean_results() -> List[float]
Return mean of results, mp, mr, map50, map.
Source code in ultralytics/utils/metrics.py
878 879 880 |
|
update
update(results: tuple)
Update the evaluation metrics with a new set of results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
results
|
tuple
|
A tuple containing evaluation metrics: - p (list): Precision for each class. - r (list): Recall for each class. - f1 (list): F1 score for each class. - all_ap (list): AP scores for all classes and all IoU thresholds. - ap_class_index (list): Index of class for each AP score. - p_curve (list): Precision curve for each class. - r_curve (list): Recall curve for each class. - f1_curve (list): F1 curve for each class. - px (list): X values for the curves. - prec_values (list): Precision values for each class. |
required |
Source code in ultralytics/utils/metrics.py
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|
ultralytics.utils.metrics.DetMetrics
DetMetrics(names: Dict[int, str] = {})
Bases: SimpleClass
, DataExportMixin
Utility class for computing detection metrics such as precision, recall, and mean average precision (mAP).
Attributes:
Name | Type | Description |
---|---|---|
names |
Dict[int, str]
|
A dictionary of class names. |
box |
Metric
|
An instance of the Metric class for storing detection results. |
speed |
Dict[str, float]
|
A dictionary for storing execution times of different parts of the detection process. |
task |
str
|
The task type, set to 'detect'. |
stats |
Dict[str, List]
|
A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images. |
nt_per_class |
Number of targets per class. |
|
nt_per_image |
Number of targets per image. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
names
|
Dict[int, str]
|
Dictionary of class names. |
{}
|
Source code in ultralytics/utils/metrics.py
959 960 961 962 963 964 965 966 967 968 969 970 971 972 |
|
ap_class_index
property
ap_class_index: List
Return the average precision index per class.
curves
property
curves: List[str]
Return a list of curves for accessing specific metrics curves.
curves_results
property
curves_results: List[List]
Return dictionary of computed performance metrics and statistics.
fitness
property
fitness: float
Return the fitness of box object.
keys
property
keys: List[str]
Return a list of keys for accessing specific metrics.
maps
property
maps: ndarray
Return mean Average Precision (mAP) scores per class.
results_dict
property
results_dict: Dict[str, float]
Return dictionary of computed performance metrics and statistics.
class_result
class_result(i: int) -> Tuple[float, float, float, float]
Return the result of evaluating the performance of an object detection model on a specific class.
Source code in ultralytics/utils/metrics.py
1030 1031 1032 |
|
clear_stats
clear_stats()
Clear the stored statistics.
Source code in ultralytics/utils/metrics.py
1016 1017 1018 1019 |
|
mean_results
mean_results() -> List[float]
Calculate mean of detected objects & return precision, recall, mAP50, and mAP50-95.
Source code in ultralytics/utils/metrics.py
1026 1027 1028 |
|
process
process(
save_dir: Path = Path("."), plot: bool = False, on_plot=None
) -> Dict[str, np.ndarray]
Process predicted results for object detection and update metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
save_dir
|
Path
|
Directory to save plots. Defaults to Path("."). |
Path('.')
|
plot
|
bool
|
Whether to plot precision-recall curves. Defaults to False. |
False
|
on_plot
|
callable
|
Function to call after plots are generated. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
Dict[str, ndarray]
|
Dictionary containing concatenated statistics arrays. |
Source code in ultralytics/utils/metrics.py
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 |
|
summary
summary(
normalize: bool = True, decimals: int = 5
) -> List[Dict[str, Union[str, float]]]
Generate a summarized representation of per-class detection metrics as a list of dictionaries. Includes shared scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
normalize
|
bool
|
For Detect metrics, everything is normalized by default [0-1]. |
True
|
decimals
|
int
|
Number of decimal places to round the metrics values to. |
5
|
Returns:
Type | Description |
---|---|
List[Dict[str, Union[str, float]]]
|
A list of dictionaries, each representing one class with corresponding metric values. |
Examples:
>>> results = model.val(data="coco8.yaml")
>>> detection_summary = results.summary()
>>> print(detection_summary)
Source code in ultralytics/utils/metrics.py
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 |
|
update_stats
update_stats(stat: Dict[str, Any]) -> None
Update statistics by appending new values to existing stat collections.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
stat
|
Dict[str, any]
|
Dictionary containing new statistical values to append. Keys should match existing keys in self.stats. |
required |
Source code in ultralytics/utils/metrics.py
974 975 976 977 978 979 980 981 982 983 |
|
ultralytics.utils.metrics.SegmentMetrics
SegmentMetrics(names: Dict[int, str] = {})
Bases: DetMetrics
Calculate and aggregate detection and segmentation metrics over a given set of classes.
Attributes:
Name | Type | Description |
---|---|---|
names |
Dict[int, str]
|
Dictionary of class names. |
box |
Metric
|
An instance of the Metric class for storing detection results. |
seg |
Metric
|
An instance of the Metric class to calculate mask segmentation metrics. |
speed |
Dict[str, float]
|
A dictionary for storing execution times of different parts of the detection process. |
task |
str
|
The task type, set to 'segment'. |
stats |
Dict[str, List]
|
A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images. |
nt_per_class |
Number of targets per class. |
|
nt_per_image |
Number of targets per image. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
names
|
Dict[int, str]
|
Dictionary of class names. |
{}
|
Source code in ultralytics/utils/metrics.py
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 |
|
curves
property
curves: List[str]
Return a list of curves for accessing specific metrics curves.
curves_results
property
curves_results: List[List]
Return dictionary of computed performance metrics and statistics.
fitness
property
fitness: float
Return the fitness score for both segmentation and bounding box models.
keys
property
keys: List[str]
Return a list of keys for accessing metrics.
maps
property
maps: ndarray
Return mAP scores for object detection and semantic segmentation models.
class_result
class_result(i: int) -> List[float]
Return classification results for a specified class index.
Source code in ultralytics/utils/metrics.py
1170 1171 1172 |
|
mean_results
mean_results() -> List[float]
Return the mean metrics for bounding box and segmentation results.
Source code in ultralytics/utils/metrics.py
1166 1167 1168 |
|
process
process(
save_dir: Path = Path("."), plot: bool = False, on_plot=None
) -> Dict[str, np.ndarray]
Process the detection and segmentation metrics over the given set of predictions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
save_dir
|
Path
|
Directory to save plots. Defaults to Path("."). |
Path('.')
|
plot
|
bool
|
Whether to plot precision-recall curves. Defaults to False. |
False
|
on_plot
|
callable
|
Function to call after plots are generated. Defaults to None. |
None
|
Returns:
Type | Description |
---|---|
Dict[str, ndarray]
|
Dictionary containing concatenated statistics arrays. |
Source code in ultralytics/utils/metrics.py
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 |
|
summary
summary(
normalize: bool = True, decimals: int = 5
) -> List[Dict[str, Union[str, float]]]
Generate a summarized representation of per-class segmentation metrics as a list of dictionaries. Includes both box and mask scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
normalize
|
bool
|
For Segment metrics, everything is normalized by default [0-1]. |
True
|
decimals
|
int
|
Number of decimal places to round the metrics values to. |
5
|
Returns:
Type | Description |
---|---|
List[Dict[str, Union[str, float]]]
|
A list of dictionaries, each representing one class with corresponding metric values. |
Examples:
>>> results = model.val(data="coco8-seg.yaml")
>>> seg_summary = results.summary(decimals=4)
>>> print(seg_summary)
Source code in ultralytics/utils/metrics.py
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 |
|
ultralytics.utils.metrics.PoseMetrics
PoseMetrics(names: Dict[int, str] = {})
Bases: DetMetrics
Calculate and aggregate detection and pose metrics over a given set of classes.
Attributes:
Name | Type | Description |
---|---|---|
names |
Dict[int, str]
|
Dictionary of class names. |
pose |
Metric
|
An instance of the Metric class to calculate pose metrics. |
box |
Metric
|
An instance of the Metric class for storing detection results. |
speed |
Dict[str, float]
|
A dictionary for storing execution times of different parts of the detection process. |
task |
str
|
The task type, set to 'pose'. |
stats |
Dict[str, List]
|
A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images. |
nt_per_class |
Number of targets per class. |
|
nt_per_image |
Number of targets per image. |
Methods:
Name | Description |
---|---|
process |
Process metrics over the given set of predictions. |
mean_results |
Return the mean of the detection and segmentation metrics over all the classes. |
class_result |
Return the detection and segmentation metrics of class |
maps |
Return the mean Average Precision (mAP) scores for IoU thresholds ranging from 0.50 to 0.95. |
fitness |
Return the fitness scores, which are a single weighted combination of metrics. |
ap_class_index |
Return the list of indices of classes used to compute Average Precision (AP). |
results_dict |
Return the dictionary containing all the detection and segmentation metrics and fitness score. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
names
|
Dict[int, str]
|
Dictionary of class names. |
{}
|
Source code in ultralytics/utils/metrics.py
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 |
|
curves
property
curves: List[str]
Return a list of curves for accessing specific metrics curves.
curves_results
property
curves_results: List[List]
Return dictionary of computed performance metrics and statistics.
fitness
property
fitness: float
Return combined fitness score for pose and box detection.
keys
property
keys: List[str]
Return list of evaluation metric keys.
maps
property
maps: ndarray
Return the mean average precision (mAP) per class for both box and pose detections.
class_result
class_result(i: int) -> List[float]
Return the class-wise detection results for a specific class i.
Source code in ultralytics/utils/metrics.py
1310 1311 1312 |
|
mean_results
mean_results() -> List[float]
Return the mean results of box and pose.
Source code in ultralytics/utils/metrics.py
1306 1307 1308 |
|
process
process(
save_dir: Path = Path("."), plot: bool = False, on_plot=None
) -> Dict[str, np.ndarray]
Process the detection and pose metrics over the given set of predictions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
save_dir
|
Path
|
Directory to save plots. Defaults to Path("."). |
Path('.')
|
plot
|
bool
|
Whether to plot precision-recall curves. Defaults to False. |
False
|
on_plot
|
callable
|
Function to call after plots are generated. |
None
|
Returns:
Type | Description |
---|---|
Dict[str, ndarray]
|
Dictionary containing concatenated statistics arrays. |
Source code in ultralytics/utils/metrics.py
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 |
|
summary
summary(
normalize: bool = True, decimals: int = 5
) -> List[Dict[str, Union[str, float]]]
Generate a summarized representation of per-class pose metrics as a list of dictionaries. Includes both box and pose scalar metrics (mAP, mAP50, mAP75) alongside precision, recall, and F1-score for each class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
normalize
|
bool
|
For Pose metrics, everything is normalized by default [0-1]. |
True
|
decimals
|
int
|
Number of decimal places to round the metrics values to. |
5
|
Returns:
Type | Description |
---|---|
List[Dict[str, Union[str, float]]]
|
A list of dictionaries, each representing one class with corresponding metric values. |
Examples:
>>> results = model.val(data="coco8-pose.yaml")
>>> pose_summary = results.summary(decimals=4)
>>> print(pose_summary)
Source code in ultralytics/utils/metrics.py
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 |
|
ultralytics.utils.metrics.ClassifyMetrics
ClassifyMetrics()
Bases: SimpleClass
, DataExportMixin
Class for computing classification metrics including top-1 and top-5 accuracy.
Attributes:
Name | Type | Description |
---|---|---|
top1 |
float
|
The top-1 accuracy. |
top5 |
float
|
The top-5 accuracy. |
speed |
dict
|
A dictionary containing the time taken for each step in the pipeline. |
task |
str
|
The task type, set to 'classify'. |
Source code in ultralytics/utils/metrics.py
1387 1388 1389 1390 1391 1392 |
|
curves
property
curves: List
Return a list of curves for accessing specific metrics curves.
curves_results
property
curves_results: List
Return a list of curves for accessing specific metrics curves.
fitness
property
fitness: float
Return mean of top-1 and top-5 accuracies as fitness score.
keys
property
keys: List[str]
Return a list of keys for the results_dict property.
results_dict
property
results_dict: Dict[str, float]
Return a dictionary with model's performance metrics and fitness score.
process
process(targets: Tensor, pred: Tensor)
Process target classes and predicted classes to compute metrics.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
targets
|
Tensor
|
Target classes. |
required |
pred
|
Tensor
|
Predicted classes. |
required |
Source code in ultralytics/utils/metrics.py
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 |
|
summary
summary(normalize: bool = True, decimals: int = 5) -> List[Dict[str, float]]
Generate a single-row summary of classification metrics (Top-1 and Top-5 accuracy).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
normalize
|
bool
|
For Classify metrics, everything is normalized by default [0-1]. |
True
|
decimals
|
int
|
Number of decimal places to round the metrics values to. |
5
|
Returns:
Type | Description |
---|---|
List[Dict[str, float]]
|
A list with one dictionary containing Top-1 and Top-5 classification accuracy. |
Examples:
>>> results = model.val(data="imagenet10")
>>> classify_summary = results.summary(decimals=4)
>>> print(classify_summary)
Source code in ultralytics/utils/metrics.py
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 |
|
ultralytics.utils.metrics.OBBMetrics
OBBMetrics(names: Dict[int, str] = {})
Bases: DetMetrics
Metrics for evaluating oriented bounding box (OBB) detection.
Attributes:
Name | Type | Description |
---|---|---|
names |
Dict[int, str]
|
Dictionary of class names. |
box |
Metric
|
An instance of the Metric class for storing detection results. |
speed |
Dict[str, float]
|
A dictionary for storing execution times of different parts of the detection process. |
task |
str
|
The task type, set to 'obb'. |
stats |
Dict[str, List]
|
A dictionary containing lists for true positives, confidence scores, predicted classes, target classes, and target images. |
nt_per_class |
Number of targets per class. |
|
nt_per_image |
Number of targets per image. |
References
Parameters:
Name | Type | Description | Default |
---|---|---|---|
names
|
Dict[int, str]
|
Dictionary of class names. |
{}
|
Source code in ultralytics/utils/metrics.py
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 |
|
ultralytics.utils.metrics.bbox_ioa
bbox_ioa(
box1: ndarray, box2: ndarray, iou: bool = False, eps: float = 1e-07
) -> np.ndarray
Calculate the intersection over box2 area given box1 and box2.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
box1
|
ndarray
|
A numpy array of shape (N, 4) representing N bounding boxes in x1y1x2y2 format. |
required |
box2
|
ndarray
|
A numpy array of shape (M, 4) representing M bounding boxes in x1y1x2y2 format. |
required |
iou
|
bool
|
Calculate the standard IoU if True else return inter_area/box2_area. |
False
|
eps
|
float
|
A small value to avoid division by zero. |
1e-07
|
Returns:
Type | Description |
---|---|
ndarray
|
A numpy array of shape (N, M) representing the intersection over box2 area. |
Source code in ultralytics/utils/metrics.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
|
ultralytics.utils.metrics.box_iou
box_iou(box1: Tensor, box2: Tensor, eps: float = 1e-07) -> torch.Tensor
Calculate intersection-over-union (IoU) of boxes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
box1
|
Tensor
|
A tensor of shape (N, 4) representing N bounding boxes in (x1, y1, x2, y2) format. |
required |
box2
|
Tensor
|
A tensor of shape (M, 4) representing M bounding boxes in (x1, y1, x2, y2) format. |
required |
eps
|
float
|
A small value to avoid division by zero. |
1e-07
|
Returns:
Type | Description |
---|---|
Tensor
|
An NxM tensor containing the pairwise IoU values for every element in box1 and box2. |
Source code in ultralytics/utils/metrics.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
|
ultralytics.utils.metrics.bbox_iou
bbox_iou(
box1: Tensor,
box2: Tensor,
xywh: bool = True,
GIoU: bool = False,
DIoU: bool = False,
CIoU: bool = False,
eps: float = 1e-07,
) -> torch.Tensor
Calculate the Intersection over Union (IoU) between bounding boxes.
This function supports various shapes for box1
and box2
as long as the last dimension is 4.
For instance, you may pass tensors shaped like (4,), (N, 4), (B, N, 4), or (B, N, 1, 4).
Internally, the code will split the last dimension into (x, y, w, h) if xywh=True
,
or (x1, y1, x2, y2) if xywh=False
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
box1
|
Tensor
|
A tensor representing one or more bounding boxes, with the last dimension being 4. |
required |
box2
|
Tensor
|
A tensor representing one or more bounding boxes, with the last dimension being 4. |
required |
xywh
|
bool
|
If True, input boxes are in (x, y, w, h) format. If False, input boxes are in (x1, y1, x2, y2) format. |
True
|
GIoU
|
bool
|
If True, calculate Generalized IoU. |
False
|
DIoU
|
bool
|
If True, calculate Distance IoU. |
False
|
CIoU
|
bool
|
If True, calculate Complete IoU. |
False
|
eps
|
float
|
A small value to avoid division by zero. |
1e-07
|
Returns:
Type | Description |
---|---|
Tensor
|
IoU, GIoU, DIoU, or CIoU values depending on the specified flags. |
Source code in ultralytics/utils/metrics.py
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
|
ultralytics.utils.metrics.mask_iou
mask_iou(mask1: Tensor, mask2: Tensor, eps: float = 1e-07) -> torch.Tensor
Calculate masks IoU.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mask1
|
Tensor
|
A tensor of shape (N, n) where N is the number of ground truth objects and n is the product of image width and height. |
required |
mask2
|
Tensor
|
A tensor of shape (M, n) where M is the number of predicted objects and n is the product of image width and height. |
required |
eps
|
float
|
A small value to avoid division by zero. |
1e-07
|
Returns:
Type | Description |
---|---|
Tensor
|
A tensor of shape (N, M) representing masks IoU. |
Source code in ultralytics/utils/metrics.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
ultralytics.utils.metrics.kpt_iou
kpt_iou(
kpt1: Tensor,
kpt2: Tensor,
area: Tensor,
sigma: List[float],
eps: float = 1e-07,
) -> torch.Tensor
Calculate Object Keypoint Similarity (OKS).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kpt1
|
Tensor
|
A tensor of shape (N, 17, 3) representing ground truth keypoints. |
required |
kpt2
|
Tensor
|
A tensor of shape (M, 17, 3) representing predicted keypoints. |
required |
area
|
Tensor
|
A tensor of shape (N,) representing areas from ground truth. |
required |
sigma
|
list
|
A list containing 17 values representing keypoint scales. |
required |
eps
|
float
|
A small value to avoid division by zero. |
1e-07
|
Returns:
Type | Description |
---|---|
Tensor
|
A tensor of shape (N, M) representing keypoint similarities. |
Source code in ultralytics/utils/metrics.py
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
ultralytics.utils.metrics._get_covariance_matrix
_get_covariance_matrix(
boxes: Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
Generate covariance matrix from oriented bounding boxes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
boxes
|
Tensor
|
A tensor of shape (N, 5) representing rotated bounding boxes, with xywhr format. |
required |
Returns:
Type | Description |
---|---|
Tensor
|
Covariance matrices corresponding to original rotated bounding boxes. |
Source code in ultralytics/utils/metrics.py
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
|
ultralytics.utils.metrics.probiou
probiou(
obb1: Tensor, obb2: Tensor, CIoU: bool = False, eps: float = 1e-07
) -> torch.Tensor
Calculate probabilistic IoU between oriented bounding boxes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obb1
|
Tensor
|
Ground truth OBBs, shape (N, 5), format xywhr. |
required |
obb2
|
Tensor
|
Predicted OBBs, shape (N, 5), format xywhr. |
required |
CIoU
|
bool
|
If True, calculate CIoU. |
False
|
eps
|
float
|
Small value to avoid division by zero. |
1e-07
|
Returns:
Type | Description |
---|---|
Tensor
|
OBB similarities, shape (N,). |
Notes
OBB format: [center_x, center_y, width, height, rotation_angle].
References
Source code in ultralytics/utils/metrics.py
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
|
ultralytics.utils.metrics.batch_probiou
batch_probiou(
obb1: Union[Tensor, ndarray],
obb2: Union[Tensor, ndarray],
eps: float = 1e-07,
) -> torch.Tensor
Calculate the probabilistic IoU between oriented bounding boxes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
obb1
|
Tensor | ndarray
|
A tensor of shape (N, 5) representing ground truth obbs, with xywhr format. |
required |
obb2
|
Tensor | ndarray
|
A tensor of shape (M, 5) representing predicted obbs, with xywhr format. |
required |
eps
|
float
|
A small value to avoid division by zero. |
1e-07
|
Returns:
Type | Description |
---|---|
Tensor
|
A tensor of shape (N, M) representing obb similarities. |
References
Source code in ultralytics/utils/metrics.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
ultralytics.utils.metrics.smooth_bce
smooth_bce(eps: float = 0.1) -> Tuple[float, float]
Compute smoothed positive and negative Binary Cross-Entropy targets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
eps
|
float
|
The epsilon value for label smoothing. |
0.1
|
Returns:
Name | Type | Description |
---|---|---|
pos |
float
|
Positive label smoothing BCE target. |
neg |
float
|
Negative label smoothing BCE target. |
Source code in ultralytics/utils/metrics.py
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
|
ultralytics.utils.metrics.smooth
smooth(y: ndarray, f: float = 0.05) -> np.ndarray
Box filter of fraction f.
Source code in ultralytics/utils/metrics.py
544 545 546 547 548 549 |
|
ultralytics.utils.metrics.plot_pr_curve
plot_pr_curve(
px: ndarray,
py: ndarray,
ap: ndarray,
save_dir: Path = Path("pr_curve.png"),
names: Dict[int, str] = {},
on_plot=None,
)
Plot precision-recall curve.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
px
|
ndarray
|
X values for the PR curve. |
required |
py
|
ndarray
|
Y values for the PR curve. |
required |
ap
|
ndarray
|
Average precision values. |
required |
save_dir
|
Path
|
Path to save the plot. |
Path('pr_curve.png')
|
names
|
Dict[int, str]
|
Dictionary mapping class indices to class names. |
{}
|
on_plot
|
callable
|
Function to call after plot is saved. |
None
|
Source code in ultralytics/utils/metrics.py
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
|
ultralytics.utils.metrics.plot_mc_curve
plot_mc_curve(
px: ndarray,
py: ndarray,
save_dir: Path = Path("mc_curve.png"),
names: Dict[int, str] = {},
xlabel: str = "Confidence",
ylabel: str = "Metric",
on_plot=None,
)
Plot metric-confidence curve.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
px
|
ndarray
|
X values for the metric-confidence curve. |
required |
py
|
ndarray
|
Y values for the metric-confidence curve. |
required |
save_dir
|
Path
|
Path to save the plot. |
Path('mc_curve.png')
|
names
|
Dict[int, str]
|
Dictionary mapping class indices to class names. |
{}
|
xlabel
|
str
|
X-axis label. |
'Confidence'
|
ylabel
|
str
|
Y-axis label. |
'Metric'
|
on_plot
|
callable
|
Function to call after plot is saved. |
None
|
Source code in ultralytics/utils/metrics.py
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
|
ultralytics.utils.metrics.compute_ap
compute_ap(
recall: List[float], precision: List[float]
) -> Tuple[float, np.ndarray, np.ndarray]
Compute the average precision (AP) given the recall and precision curves.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
recall
|
list
|
The recall curve. |
required |
precision
|
list
|
The precision curve. |
required |
Returns:
Name | Type | Description |
---|---|---|
ap |
float
|
Average precision. |
mpre |
ndarray
|
Precision envelope curve. |
mrec |
ndarray
|
Modified recall curve with sentinel values added at the beginning and end. |
Source code in ultralytics/utils/metrics.py
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
|
ultralytics.utils.metrics.ap_per_class
ap_per_class(
tp: ndarray,
conf: ndarray,
pred_cls: ndarray,
target_cls: ndarray,
plot: bool = False,
on_plot=None,
save_dir: Path = Path(),
names: Dict[int, str] = {},
eps: float = 1e-16,
prefix: str = "",
) -> Tuple
Compute the average precision per class for object detection evaluation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tp
|
ndarray
|
Binary array indicating whether the detection is correct (True) or not (False). |
required |
conf
|
ndarray
|
Array of confidence scores of the detections. |
required |
pred_cls
|
ndarray
|
Array of predicted classes of the detections. |
required |
target_cls
|
ndarray
|
Array of true classes of the detections. |
required |
plot
|
bool
|
Whether to plot PR curves or not. |
False
|
on_plot
|
callable
|
A callback to pass plots path and data when they are rendered. |
None
|
save_dir
|
Path
|
Directory to save the PR curves. |
Path()
|
names
|
Dict[int, str]
|
Dictionary of class names to plot PR curves. |
{}
|
eps
|
float
|
A small value to avoid division by zero. |
1e-16
|
prefix
|
str
|
A prefix string for saving the plot files. |
''
|
Returns:
Name | Type | Description |
---|---|---|
tp |
ndarray
|
True positive counts at threshold given by max F1 metric for each class. |
fp |
ndarray
|
False positive counts at threshold given by max F1 metric for each class. |
p |
ndarray
|
Precision values at threshold given by max F1 metric for each class. |
r |
ndarray
|
Recall values at threshold given by max F1 metric for each class. |
f1 |
ndarray
|
F1-score values at threshold given by max F1 metric for each class. |
ap |
ndarray
|
Average precision for each class at different IoU thresholds. |
unique_classes |
ndarray
|
An array of unique classes that have data. |
p_curve |
ndarray
|
Precision curves for each class. |
r_curve |
ndarray
|
Recall curves for each class. |
f1_curve |
ndarray
|
F1-score curves for each class. |
x |
ndarray
|
X-axis values for the curves. |
prec_values |
ndarray
|
Precision values at mAP@0.5 for each class. |
Source code in ultralytics/utils/metrics.py
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 |
|