Reference for ultralytics/utils/autobatch.py
Note
Full source code for this file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/autobatch.py. Help us fix any issues you see by submitting a Pull Request 🛠️. Thank you 🙏!
ultralytics.utils.autobatch.check_train_batch_size(model, imgsz=640, amp=True)
Check YOLO training batch size using the autobatch() function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Module
|
YOLO model to check batch size for. |
required |
imgsz |
int
|
Image size used for training. |
640
|
amp |
bool
|
If True, use automatic mixed precision (AMP) for training. |
True
|
Returns:
Type | Description |
---|---|
int
|
Optimal batch size computed using the autobatch() function. |
Source code in ultralytics/utils/autobatch.py
ultralytics.utils.autobatch.autobatch(model, imgsz=640, fraction=0.6, batch_size=DEFAULT_CFG.batch)
Automatically estimate the best YOLO batch size to use a fraction of the available CUDA memory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
module
|
YOLO model to compute batch size for. |
required |
imgsz |
int
|
The image size used as input for the YOLO model. Defaults to 640. |
640
|
fraction |
float
|
The fraction of available CUDA memory to use. Defaults to 0.67. |
0.6
|
batch_size |
int
|
The default batch size to use if an error is detected. Defaults to 16. |
batch
|
Returns:
Type | Description |
---|---|
int
|
The optimal batch size. |