Reference for ultralytics/solutions/solutions.py
Note
This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/solutions.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!
ultralytics.solutions.solutions.BaseSolution
BaseSolution(is_cli: bool = False, **kwargs: Any)
A base class for managing Ultralytics Solutions.
This class provides core functionality for various Ultralytics Solutions, including model loading, object tracking, and region initialization. It serves as the foundation for implementing specific computer vision solutions such as object counting, pose estimation, and analytics.
Attributes:
Name | Type | Description |
---|---|---|
LineString |
Class for creating line string geometries from shapely. |
|
Polygon |
Class for creating polygon geometries from shapely. |
|
Point |
Class for creating point geometries from shapely. |
|
prep |
Prepared geometry function from shapely for optimized spatial operations. |
|
CFG |
Dict[str, Any]
|
Configuration dictionary loaded from YAML file and updated with kwargs. |
LOGGER |
Logger instance for solution-specific logging. |
|
annotator |
Annotator instance for drawing on images. |
|
tracks |
YOLO tracking results from the latest inference. |
|
track_data |
Extracted tracking data (boxes or OBB) from tracks. |
|
boxes |
List
|
Bounding box coordinates from tracking results. |
clss |
List[int]
|
Class indices from tracking results. |
track_ids |
List[int]
|
Track IDs from tracking results. |
confs |
List[float]
|
Confidence scores from tracking results. |
track_line |
Current track line for storing tracking history. |
|
masks |
Segmentation masks from tracking results. |
|
r_s |
Region or line geometry object for spatial operations. |
|
frame_no |
int
|
Current frame number for logging purposes. |
region |
List[Tuple[int, int]]
|
List of coordinate tuples defining region of interest. |
line_width |
int
|
Width of lines used in visualizations. |
model |
YOLO
|
Loaded YOLO model instance. |
names |
Dict[int, str]
|
Dictionary mapping class indices to class names. |
classes |
List[int]
|
List of class indices to track. |
show_conf |
bool
|
Flag to show confidence scores in annotations. |
show_labels |
bool
|
Flag to show class labels in annotations. |
device |
str
|
Device for model inference. |
track_add_args |
Dict[str, Any]
|
Additional arguments for tracking configuration. |
env_check |
bool
|
Flag indicating whether environment supports image display. |
track_history |
defaultdict
|
Dictionary storing tracking history for each object. |
profilers |
Tuple
|
Profiler instances for performance monitoring. |
Methods:
Name | Description |
---|---|
adjust_box_label |
Generate formatted label for bounding box. |
extract_tracks |
Apply object tracking and extract tracks from input image. |
store_tracking_history |
Store object tracking history for given track ID and bounding box. |
initialize_region |
Initialize counting region and line segment based on configuration. |
display_output |
Display processing results including frames or saved results. |
process |
Process method to be implemented by each Solution subclass. |
Examples:
>>> solution = BaseSolution(model="yolo11n.pt", region=[(0, 0), (100, 0), (100, 100), (0, 100)])
>>> solution.initialize_region()
>>> image = cv2.imread("image.jpg")
>>> solution.extract_tracks(image)
>>> solution.display_output(image)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
is_cli
|
bool
|
Enable CLI mode if set to True. |
False
|
**kwargs
|
Any
|
Additional configuration parameters that override defaults. |
{}
|
Source code in ultralytics/solutions/solutions.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
|
__call__
__call__(*args: Any, **kwargs: Any)
Allow instances to be called like a function with flexible arguments.
Source code in ultralytics/solutions/solutions.py
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
|
adjust_box_label
adjust_box_label(
cls: int, conf: float, track_id: Optional[int] = None
) -> Optional[str]
Generate a formatted label for a bounding box.
This method constructs a label string for a bounding box using the class index and confidence score.
Optionally includes the track ID if provided. The label format adapts based on the display settings
defined in self.show_conf
and self.show_labels
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cls
|
int
|
The class index of the detected object. |
required |
conf
|
float
|
The confidence score of the detection. |
required |
track_id
|
int
|
The unique identifier for the tracked object. |
None
|
Returns:
Type | Description |
---|---|
str | None
|
The formatted label string if |
Source code in ultralytics/solutions/solutions.py
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
display_output
display_output(plot_im: ndarray) -> None
Display the results of the processing, which could involve showing frames, printing counts, or saving results.
This method is responsible for visualizing the output of the object detection and tracking process. It displays the processed frame with annotations, and allows for user interaction to close the display.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
plot_im
|
ndarray
|
The image or frame that has been processed and annotated. |
required |
Examples:
>>> solution = BaseSolution()
>>> frame = cv2.imread("path/to/image.jpg")
>>> solution.display_output(frame)
Notes
- This method will only display output if the 'show' configuration is set to True and the environment supports image display.
- The display can be closed by pressing the 'q' key.
Source code in ultralytics/solutions/solutions.py
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
|
extract_tracks
extract_tracks(im0: ndarray) -> None
Apply object tracking and extract tracks from an input image or frame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
im0
|
ndarray
|
The input image or frame. |
required |
Examples:
>>> solution = BaseSolution()
>>> frame = cv2.imread("path/to/image.jpg")
>>> solution.extract_tracks(frame)
Source code in ultralytics/solutions/solutions.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
|
initialize_region
initialize_region() -> None
Initialize the counting region and line segment based on configuration settings.
Source code in ultralytics/solutions/solutions.py
207 208 209 210 211 212 213 |
|
process
process(*args: Any, **kwargs: Any)
Process method should be implemented by each Solution subclass.
Source code in ultralytics/solutions/solutions.py
241 242 |
|
store_tracking_history
store_tracking_history(track_id: int, box) -> None
Store the tracking history of an object.
This method updates the tracking history for a given object by appending the center point of its bounding box to the track line. It maintains a maximum of 30 points in the tracking history.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
track_id
|
int
|
The unique identifier for the tracked object. |
required |
box
|
List[float]
|
The bounding box coordinates of the object in the format [x1, y1, x2, y2]. |
required |
Examples:
>>> solution = BaseSolution()
>>> solution.store_tracking_history(1, [100, 200, 300, 400])
Source code in ultralytics/solutions/solutions.py
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
|
ultralytics.solutions.solutions.SolutionAnnotator
SolutionAnnotator(
im: ndarray,
line_width: Optional[int] = None,
font_size: Optional[int] = None,
font: str = "Arial.ttf",
pil: bool = False,
example: str = "abc",
)
Bases: Annotator
A specialized annotator class for visualizing and analyzing computer vision tasks.
This class extends the base Annotator class, providing additional methods for drawing regions, centroids, tracking trails, and visual annotations for Ultralytics Solutions. It offers comprehensive visualization capabilities for various computer vision applications including object detection, tracking, pose estimation, and analytics.
Attributes:
Name | Type | Description |
---|---|---|
im |
ndarray
|
The image being annotated. |
line_width |
int
|
Thickness of lines used in annotations. |
font_size |
int
|
Size of the font used for text annotations. |
font |
str
|
Path to the font file used for text rendering. |
pil |
bool
|
Whether to use PIL for text rendering. |
example |
str
|
An example attribute for demonstration purposes. |
Methods:
Name | Description |
---|---|
draw_region |
Draw a region using specified points, colors, and thickness. |
queue_counts_display |
Display queue counts in the specified region. |
display_analytics |
Display overall statistics for parking lot management. |
estimate_pose_angle |
Calculate the angle between three points in an object pose. |
draw_specific_kpts |
Draw specific keypoints on the image. |
plot_workout_information |
Draw a labeled text box on the image. |
plot_angle_and_count_and_stage |
Visualize angle, step count, and stage for workout monitoring. |
plot_distance_and_line |
Display the distance between centroids and connect them with a line. |
display_objects_labels |
Annotate bounding boxes with object class labels. |
sweep_annotator |
Visualize a vertical sweep line and optional label. |
visioneye |
Map and connect object centroids to a visual "eye" point. |
circle_label |
Draw a circular label within a bounding box. |
text_label |
Draw a rectangular label within a bounding box. |
Examples:
>>> annotator = SolutionAnnotator(image)
>>> annotator.draw_region([(0, 0), (100, 100)], color=(0, 255, 0), thickness=5)
>>> annotator.display_analytics(
... image, text={"Available Spots": 5}, txt_color=(0, 0, 0), bg_color=(255, 255, 255), margin=10
... )
Parameters:
Name | Type | Description | Default |
---|---|---|---|
im
|
ndarray
|
The image to be annotated. |
required |
line_width
|
int
|
Line thickness for drawing on the image. |
None
|
font_size
|
int
|
Font size for text annotations. |
None
|
font
|
str
|
Path to the font file. |
'Arial.ttf'
|
pil
|
bool
|
Indicates whether to use PIL for rendering text. |
False
|
example
|
str
|
An example parameter for demonstration purposes. |
'abc'
|
Source code in ultralytics/solutions/solutions.py
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
|
circle_label
circle_label(
box: Tuple[float, float, float, float],
label: str = "",
color: Tuple[int, int, int] = (128, 128, 128),
txt_color: Tuple[int, int, int] = (255, 255, 255),
margin: int = 2,
)
Draw a label with a background circle centered within a given bounding box.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
box
|
Tuple[float, float, float, float]
|
The bounding box coordinates (x1, y1, x2, y2). |
required |
label
|
str
|
The text label to be displayed. |
''
|
color
|
Tuple[int, int, int]
|
The background color of the circle (B, G, R). |
(128, 128, 128)
|
txt_color
|
Tuple[int, int, int]
|
The color of the text (R, G, B). |
(255, 255, 255)
|
margin
|
int
|
The margin between the text and the circle border. |
2
|
Source code in ultralytics/solutions/solutions.py
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 |
|
display_analytics
display_analytics(
im0: ndarray,
text: Dict[str, Any],
txt_color: Tuple[int, int, int],
bg_color: Tuple[int, int, int],
margin: int,
)
Display the overall statistics for parking lots, object counter etc.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
im0
|
ndarray
|
Inference image. |
required |
text
|
Dict[str, Any]
|
Labels dictionary. |
required |
txt_color
|
Tuple[int, int, int]
|
Display color for text foreground. |
required |
bg_color
|
Tuple[int, int, int]
|
Display color for text background. |
required |
margin
|
int
|
Gap between text and rectangle for better display. |
required |
Source code in ultralytics/solutions/solutions.py
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
|
display_objects_labels
display_objects_labels(
im0: ndarray,
text: str,
txt_color: Tuple[int, int, int],
bg_color: Tuple[int, int, int],
x_center: float,
y_center: float,
margin: int,
)
Display the bounding boxes labels in parking management app.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
im0
|
ndarray
|
Inference image. |
required |
text
|
str
|
Object/class name. |
required |
txt_color
|
Tuple[int, int, int]
|
Display color for text foreground. |
required |
bg_color
|
Tuple[int, int, int]
|
Display color for text background. |
required |
x_center
|
float
|
The x position center point for bounding box. |
required |
y_center
|
float
|
The y position center point for bounding box. |
required |
margin
|
int
|
The gap between text and rectangle for better display. |
required |
Source code in ultralytics/solutions/solutions.py
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
|
draw_region
draw_region(
reg_pts: Optional[List[Tuple[int, int]]] = None,
color: Tuple[int, int, int] = (0, 255, 0),
thickness: int = 5,
)
Draw a region or line on the image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
reg_pts
|
List[Tuple[int, int]]
|
Region points (for line 2 points, for region 4+ points). |
None
|
color
|
Tuple[int, int, int]
|
RGB color value for the region. |
(0, 255, 0)
|
thickness
|
int
|
Line thickness for drawing the region. |
5
|
Source code in ultralytics/solutions/solutions.py
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
draw_specific_kpts
draw_specific_kpts(
keypoints: List[List[float]],
indices: Optional[List[int]] = None,
radius: int = 2,
conf_thresh: float = 0.25,
) -> np.ndarray
Draw specific keypoints for gym steps counting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keypoints
|
List[List[float]]
|
Keypoints data to be plotted, each in format [x, y, confidence]. |
required |
indices
|
List[int]
|
Keypoint indices to be plotted. |
None
|
radius
|
int
|
Keypoint radius. |
2
|
conf_thresh
|
float
|
Confidence threshold for keypoints. |
0.25
|
Returns:
Type | Description |
---|---|
ndarray
|
Image with drawn keypoints. |
Notes
Keypoint format: [x, y] or [x, y, confidence]. Modifies self.im in-place.
Source code in ultralytics/solutions/solutions.py
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
|
estimate_pose_angle
cached
staticmethod
estimate_pose_angle(a: List[float], b: List[float], c: List[float]) -> float
Calculate the angle between three points for workout monitoring.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
a
|
List[float]
|
The coordinates of the first point. |
required |
b
|
List[float]
|
The coordinates of the second point (vertex). |
required |
c
|
List[float]
|
The coordinates of the third point. |
required |
Returns:
Type | Description |
---|---|
float
|
The angle in degrees between the three points. |
Source code in ultralytics/solutions/solutions.py
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
|
plot_angle_and_count_and_stage
plot_angle_and_count_and_stage(
angle_text: str,
count_text: str,
stage_text: str,
center_kpt: List[int],
color: Tuple[int, int, int] = (104, 31, 17),
txt_color: Tuple[int, int, int] = (255, 255, 255),
)
Plot the pose angle, count value, and step stage for workout monitoring.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
angle_text
|
str
|
Angle value for workout monitoring. |
required |
count_text
|
str
|
Counts value for workout monitoring. |
required |
stage_text
|
str
|
Stage decision for workout monitoring. |
required |
center_kpt
|
List[int]
|
Centroid pose index for workout monitoring. |
required |
color
|
Tuple[int, int, int]
|
Text background color. |
(104, 31, 17)
|
txt_color
|
Tuple[int, int, int]
|
Text foreground color. |
(255, 255, 255)
|
Source code in ultralytics/solutions/solutions.py
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
|
plot_distance_and_line
plot_distance_and_line(
pixels_distance: float,
centroids: List[Tuple[int, int]],
line_color: Tuple[int, int, int] = (104, 31, 17),
centroid_color: Tuple[int, int, int] = (255, 0, 255),
)
Plot the distance and line between two centroids on the frame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pixels_distance
|
float
|
Pixels distance between two bbox centroids. |
required |
centroids
|
List[Tuple[int, int]]
|
Bounding box centroids data. |
required |
line_color
|
Tuple[int, int, int]
|
Distance line color. |
(104, 31, 17)
|
centroid_color
|
Tuple[int, int, int]
|
Bounding box centroid color. |
(255, 0, 255)
|
Source code in ultralytics/solutions/solutions.py
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
|
plot_workout_information
plot_workout_information(
display_text: str,
position: Tuple[int, int],
color: Tuple[int, int, int] = (104, 31, 17),
txt_color: Tuple[int, int, int] = (255, 255, 255),
) -> int
Draw workout text with a background on the image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
display_text
|
str
|
The text to be displayed. |
required |
position
|
Tuple[int, int]
|
Coordinates (x, y) on the image where the text will be placed. |
required |
color
|
Tuple[int, int, int]
|
Text background color. |
(104, 31, 17)
|
txt_color
|
Tuple[int, int, int]
|
Text foreground color. |
(255, 255, 255)
|
Returns:
Type | Description |
---|---|
int
|
The height of the text. |
Source code in ultralytics/solutions/solutions.py
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
|
queue_counts_display
queue_counts_display(
label: str,
points: Optional[List[Tuple[int, int]]] = None,
region_color: Tuple[int, int, int] = (255, 255, 255),
txt_color: Tuple[int, int, int] = (0, 0, 0),
)
Display queue counts on an image centered at the points with customizable font size and colors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
label
|
str
|
Queue counts label. |
required |
points
|
List[Tuple[int, int]]
|
Region points for center point calculation to display text. |
None
|
region_color
|
Tuple[int, int, int]
|
RGB queue region color. |
(255, 255, 255)
|
txt_color
|
Tuple[int, int, int]
|
RGB text display color. |
(0, 0, 0)
|
Source code in ultralytics/solutions/solutions.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
|
sweep_annotator
sweep_annotator(
line_x: int = 0,
line_y: int = 0,
label: Optional[str] = None,
color: Tuple[int, int, int] = (221, 0, 186),
txt_color: Tuple[int, int, int] = (255, 255, 255),
)
Draw a sweep annotation line and an optional label.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
line_x
|
int
|
The x-coordinate of the sweep line. |
0
|
line_y
|
int
|
The y-coordinate limit of the sweep line. |
0
|
label
|
str
|
Text label to be drawn in center of sweep line. If None, no label is drawn. |
None
|
color
|
Tuple[int, int, int]
|
RGB color for the line and label background. |
(221, 0, 186)
|
txt_color
|
Tuple[int, int, int]
|
RGB color for the label text. |
(255, 255, 255)
|
Source code in ultralytics/solutions/solutions.py
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
|
text_label
text_label(
box: Tuple[float, float, float, float],
label: str = "",
color: Tuple[int, int, int] = (128, 128, 128),
txt_color: Tuple[int, int, int] = (255, 255, 255),
margin: int = 5,
)
Draw a label with a background rectangle centered within a given bounding box.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
box
|
Tuple[float, float, float, float]
|
The bounding box coordinates (x1, y1, x2, y2). |
required |
label
|
str
|
The text label to be displayed. |
''
|
color
|
Tuple[int, int, int]
|
The background color of the rectangle (B, G, R). |
(128, 128, 128)
|
txt_color
|
Tuple[int, int, int]
|
The color of the text (R, G, B). |
(255, 255, 255)
|
margin
|
int
|
The margin between the text and the rectangle border. |
5
|
Source code in ultralytics/solutions/solutions.py
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
|
visioneye
visioneye(
box: List[float],
center_point: Tuple[int, int],
color: Tuple[int, int, int] = (235, 219, 11),
pin_color: Tuple[int, int, int] = (255, 0, 255),
)
Perform pinpoint human-vision eye mapping and plotting.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
box
|
List[float]
|
Bounding box coordinates in format [x1, y1, x2, y2]. |
required |
center_point
|
Tuple[int, int]
|
Center point for vision eye view. |
required |
color
|
Tuple[int, int, int]
|
Object centroid and line color. |
(235, 219, 11)
|
pin_color
|
Tuple[int, int, int]
|
Visioneye point color. |
(255, 0, 255)
|
Source code in ultralytics/solutions/solutions.py
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
|
ultralytics.solutions.solutions.SolutionResults
SolutionResults(**kwargs)
A class to encapsulate the results of Ultralytics Solutions.
This class is designed to store and manage various outputs generated by the solution pipeline, including counts, angles, workout stages, and other analytics data. It provides a structured way to access and manipulate results from different computer vision solutions such as object counting, pose estimation, and tracking analytics.
Attributes:
Name | Type | Description |
---|---|---|
plot_im |
ndarray
|
Processed image with counts, blurred, or other effects from solutions. |
in_count |
int
|
The total number of "in" counts in a video stream. |
out_count |
int
|
The total number of "out" counts in a video stream. |
classwise_count |
Dict[str, int]
|
A dictionary containing counts of objects categorized by class. |
queue_count |
int
|
The count of objects in a queue or waiting area. |
workout_count |
int
|
The count of workout repetitions. |
workout_angle |
float
|
The angle calculated during a workout exercise. |
workout_stage |
str
|
The current stage of the workout. |
pixels_distance |
float
|
The calculated distance in pixels between two points or objects. |
available_slots |
int
|
The number of available slots in a monitored area. |
filled_slots |
int
|
The number of filled slots in a monitored area. |
email_sent |
bool
|
A flag indicating whether an email notification was sent. |
total_tracks |
int
|
The total number of tracked objects. |
region_counts |
Dict
|
The count of objects within a specific region. |
speed_dict |
Dict[str, float]
|
A dictionary containing speed information for tracked objects. |
total_crop_objects |
int
|
Total number of cropped objects using ObjectCropper class. |
speed |
Dict
|
Performance timing information for tracking and solution processing. |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**kwargs
|
Any
|
Optional arguments to override default attribute values. |
{}
|
Source code in ultralytics/solutions/solutions.py
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 |
|
__str__
__str__() -> str
Return a formatted string representation of the SolutionResults object.
Returns:
Type | Description |
---|---|
str
|
A string representation listing non-null attributes. |
Source code in ultralytics/solutions/solutions.py
845 846 847 848 849 850 851 852 853 854 855 856 857 |
|