Skip to content

Reference for ultralytics/solutions/analytics.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/analytics.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.solutions.analytics.Analytics

Analytics(**kwargs)

Bases: BaseSolution

A class for creating and updating various types of charts for visual analytics.

This class extends BaseSolution to provide functionality for generating line, bar, pie, and area charts based on object detection and tracking data.

Attributes:

Name Type Description
type str

The type of analytics chart to generate ('line', 'bar', 'pie', or 'area').

x_label str

Label for the x-axis.

y_label str

Label for the y-axis.

bg_color str

Background color of the chart frame.

fg_color str

Foreground color of the chart frame.

title str

Title of the chart window.

max_points int

Maximum number of data points to display on the chart.

fontsize int

Font size for text display.

color_cycle cycle

Cyclic iterator for chart colors.

total_counts int

Total count of detected objects (used for line charts).

clswise_count Dict[str, int]

Dictionary for class-wise object counts.

fig Figure

Matplotlib figure object for the chart.

ax Axes

Matplotlib axes object for the chart.

canvas FigureCanvasAgg

Canvas for rendering the chart.

Methods:

Name Description
process_data

Processes image data and updates the chart.

update_graph

Updates the chart with new data points.

Examples:

>>> analytics = Analytics(analytics_type="line")
>>> frame = cv2.imread("image.jpg")
>>> processed_frame = analytics.process_data(frame, frame_number=1)
>>> cv2.imshow("Analytics", processed_frame)
Source code in ultralytics/solutions/analytics.py
def __init__(self, **kwargs):
    """Initialize Analytics class with various chart types for visual data representation."""
    super().__init__(**kwargs)

    self.type = self.CFG["analytics_type"]  # extract type of analytics
    self.x_label = "Classes" if self.type in {"bar", "pie"} else "Frame#"
    self.y_label = "Total Counts"

    # Predefined data
    self.bg_color = "#F3F3F3"  # background color of frame
    self.fg_color = "#111E68"  # foreground color of frame
    self.title = "Ultralytics Solutions"  # window name
    self.max_points = 45  # maximum points to be drawn on window
    self.fontsize = 25  # text font size for display
    figsize = (19.2, 10.8)  # Set output image size 1920 * 1080
    self.color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"])

    self.total_counts = 0  # count variable for storing total counts i.e. for line
    self.clswise_count = {}  # dictionary for class-wise counts

    # Ensure line and area chart
    if self.type in {"line", "area"}:
        self.lines = {}
        self.fig = Figure(facecolor=self.bg_color, figsize=figsize)
        self.canvas = FigureCanvas(self.fig)  # Set common axis properties
        self.ax = self.fig.add_subplot(111, facecolor=self.bg_color)
        if self.type == "line":
            (self.line,) = self.ax.plot([], [], color="cyan", linewidth=self.line_width)
    elif self.type in {"bar", "pie"}:
        # Initialize bar or pie plot
        self.fig, self.ax = plt.subplots(figsize=figsize, facecolor=self.bg_color)
        self.canvas = FigureCanvas(self.fig)  # Set common axis properties
        self.ax.set_facecolor(self.bg_color)
        self.color_mapping = {}

        if self.type == "pie":  # Ensure pie chart is circular
            self.ax.axis("equal")

process_data

process_data(im0, frame_number)

Processes image data and runs object tracking to update analytics charts.

Parameters:

Name Type Description Default
im0 ndarray

Input image for processing.

required
frame_number int

Video frame number for plotting the data.

required

Returns:

Type Description
ndarray

Processed image with updated analytics chart.

Raises:

Type Description
ModuleNotFoundError

If an unsupported chart type is specified.

Examples:

>>> analytics = Analytics(analytics_type="line")
>>> frame = np.zeros((480, 640, 3), dtype=np.uint8)
>>> processed_frame = analytics.process_data(frame, frame_number=1)
Source code in ultralytics/solutions/analytics.py
def process_data(self, im0, frame_number):
    """
    Processes image data and runs object tracking to update analytics charts.

    Args:
        im0 (np.ndarray): Input image for processing.
        frame_number (int): Video frame number for plotting the data.

    Returns:
        (np.ndarray): Processed image with updated analytics chart.

    Raises:
        ModuleNotFoundError: If an unsupported chart type is specified.

    Examples:
        >>> analytics = Analytics(analytics_type="line")
        >>> frame = np.zeros((480, 640, 3), dtype=np.uint8)
        >>> processed_frame = analytics.process_data(frame, frame_number=1)
    """
    self.extract_tracks(im0)  # Extract tracks

    if self.type == "line":
        for _ in self.boxes:
            self.total_counts += 1
        im0 = self.update_graph(frame_number=frame_number)
        self.total_counts = 0
    elif self.type in {"pie", "bar", "area"}:
        self.clswise_count = {}
        for box, cls in zip(self.boxes, self.clss):
            if self.names[int(cls)] in self.clswise_count:
                self.clswise_count[self.names[int(cls)]] += 1
            else:
                self.clswise_count[self.names[int(cls)]] = 1
        im0 = self.update_graph(frame_number=frame_number, count_dict=self.clswise_count, plot=self.type)
    else:
        raise ModuleNotFoundError(f"{self.type} chart is not supported ❌")
    return im0

update_graph

update_graph(frame_number, count_dict=None, plot='line')

Updates the graph with new data for single or multiple classes.

Parameters:

Name Type Description Default
frame_number int

The current frame number.

required
count_dict Dict[str, int] | None

Dictionary with class names as keys and counts as values for multiple classes. If None, updates a single line graph.

None
plot str

Type of the plot. Options are 'line', 'bar', 'pie', or 'area'.

'line'

Returns:

Type Description
ndarray

Updated image containing the graph.

Examples:

>>> analytics = Analytics()
>>> frame_number = 10
>>> count_dict = {"person": 5, "car": 3}
>>> updated_image = analytics.update_graph(frame_number, count_dict, plot="bar")
Source code in ultralytics/solutions/analytics.py
def update_graph(self, frame_number, count_dict=None, plot="line"):
    """
    Updates the graph with new data for single or multiple classes.

    Args:
        frame_number (int): The current frame number.
        count_dict (Dict[str, int] | None): Dictionary with class names as keys and counts as values for multiple
            classes. If None, updates a single line graph.
        plot (str): Type of the plot. Options are 'line', 'bar', 'pie', or 'area'.

    Returns:
        (np.ndarray): Updated image containing the graph.

    Examples:
        >>> analytics = Analytics()
        >>> frame_number = 10
        >>> count_dict = {"person": 5, "car": 3}
        >>> updated_image = analytics.update_graph(frame_number, count_dict, plot="bar")
    """
    if count_dict is None:
        # Single line update
        x_data = np.append(self.line.get_xdata(), float(frame_number))
        y_data = np.append(self.line.get_ydata(), float(self.total_counts))

        if len(x_data) > self.max_points:
            x_data, y_data = x_data[-self.max_points :], y_data[-self.max_points :]

        self.line.set_data(x_data, y_data)
        self.line.set_label("Counts")
        self.line.set_color("#7b0068")  # Pink color
        self.line.set_marker("*")
        self.line.set_markersize(self.line_width * 5)
    else:
        labels = list(count_dict.keys())
        counts = list(count_dict.values())
        if plot == "area":
            color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"])
            # Multiple lines or area update
            x_data = self.ax.lines[0].get_xdata() if self.ax.lines else np.array([])
            y_data_dict = {key: np.array([]) for key in count_dict.keys()}
            if self.ax.lines:
                for line, key in zip(self.ax.lines, count_dict.keys()):
                    y_data_dict[key] = line.get_ydata()

            x_data = np.append(x_data, float(frame_number))
            max_length = len(x_data)
            for key in count_dict.keys():
                y_data_dict[key] = np.append(y_data_dict[key], float(count_dict[key]))
                if len(y_data_dict[key]) < max_length:
                    y_data_dict[key] = np.pad(y_data_dict[key], (0, max_length - len(y_data_dict[key])))
            if len(x_data) > self.max_points:
                x_data = x_data[1:]
                for key in count_dict.keys():
                    y_data_dict[key] = y_data_dict[key][1:]

            self.ax.clear()
            for key, y_data in y_data_dict.items():
                color = next(color_cycle)
                self.ax.fill_between(x_data, y_data, color=color, alpha=0.7)
                self.ax.plot(
                    x_data,
                    y_data,
                    color=color,
                    linewidth=self.line_width,
                    marker="o",
                    markersize=self.line_width * 5,
                    label=f"{key} Data Points",
                )
        if plot == "bar":
            self.ax.clear()  # clear bar data
            for label in labels:  # Map labels to colors
                if label not in self.color_mapping:
                    self.color_mapping[label] = next(self.color_cycle)
            colors = [self.color_mapping[label] for label in labels]
            bars = self.ax.bar(labels, counts, color=colors)
            for bar, count in zip(bars, counts):
                self.ax.text(
                    bar.get_x() + bar.get_width() / 2,
                    bar.get_height(),
                    str(count),
                    ha="center",
                    va="bottom",
                    color=self.fg_color,
                )
            # Create the legend using labels from the bars
            for bar, label in zip(bars, labels):
                bar.set_label(label)  # Assign label to each bar
            self.ax.legend(loc="upper left", fontsize=13, facecolor=self.fg_color, edgecolor=self.fg_color)
        if plot == "pie":
            total = sum(counts)
            percentages = [size / total * 100 for size in counts]
            start_angle = 90
            self.ax.clear()

            # Create pie chart and create legend labels with percentages
            wedges, autotexts = self.ax.pie(
                counts, labels=labels, startangle=start_angle, textprops={"color": self.fg_color}, autopct=None
            )
            legend_labels = [f"{label} ({percentage:.1f}%)" for label, percentage in zip(labels, percentages)]

            # Assign the legend using the wedges and manually created labels
            self.ax.legend(wedges, legend_labels, title="Classes", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1))
            self.fig.subplots_adjust(left=0.1, right=0.75)  # Adjust layout to fit the legend

    # Common plot settings
    self.ax.set_facecolor("#f0f0f0")  # Set to light gray or any other color you like
    self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize)
    self.ax.set_xlabel(self.x_label, color=self.fg_color, fontsize=self.fontsize - 3)
    self.ax.set_ylabel(self.y_label, color=self.fg_color, fontsize=self.fontsize - 3)

    # Add and format legend
    legend = self.ax.legend(loc="upper left", fontsize=13, facecolor=self.bg_color, edgecolor=self.bg_color)
    for text in legend.get_texts():
        text.set_color(self.fg_color)

    # Redraw graph, update view, capture, and display the updated plot
    self.ax.relim()
    self.ax.autoscale_view()
    self.canvas.draw()
    im0 = np.array(self.canvas.renderer.buffer_rgba())
    im0 = cv2.cvtColor(im0[:, :, :3], cv2.COLOR_RGBA2BGR)
    self.display_output(im0)

    return im0  # Return the image



📅 Created 7 months ago ✏️ Updated 4 months ago