Skip to content

Reference for ultralytics/nn/text_model.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/text_model.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.nn.text_model.TextModel

TextModel()

Bases: Module

Abstract base class for text encoding models.

This class defines the interface for text encoding models used in vision-language tasks. Subclasses must implement the tokenize and encode_text methods.

Methods:

Name Description
tokenize

Convert input texts to tokens.

encode_text

Encode tokenized texts into feature vectors.

Source code in ultralytics/nn/text_model.py
def __init__(self):
    """Initialize the TextModel base class."""
    super().__init__()

encode_text abstractmethod

encode_text(texts, dtype)

Encode tokenized texts into normalized feature vectors.

Source code in ultralytics/nn/text_model.py
@abstractmethod
def encode_text(texts, dtype):
    """Encode tokenized texts into normalized feature vectors."""
    pass

tokenize abstractmethod

tokenize(texts)

Convert input texts to tokens for model processing.

Source code in ultralytics/nn/text_model.py
@abstractmethod
def tokenize(texts):
    """Convert input texts to tokens for model processing."""
    pass





ultralytics.nn.text_model.CLIP

CLIP(size, device)

Bases: TextModel

Implements OpenAI's CLIP (Contrastive Language-Image Pre-training) text encoder.

This class provides a text encoder based on OpenAI's CLIP model, which can convert text into feature vectors that are aligned with corresponding image features in a shared embedding space.

Attributes:

Name Type Description
model CLIP

The loaded CLIP model.

device device

Device where the model is loaded.

Methods:

Name Description
tokenize

Convert input texts to CLIP tokens.

encode_text

Encode tokenized texts into normalized feature vectors.

Examples:

>>> from ultralytics.models.sam import CLIP
>>> import torch
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> clip_model = CLIP(size="ViT-B/32", device=device)
>>> tokens = clip_model.tokenize(["a photo of a cat", "a photo of a dog"])
>>> text_features = clip_model.encode_text(tokens)
>>> print(text_features.shape)

This class implements the TextModel interface using OpenAI's CLIP model for text encoding. It loads a pre-trained CLIP model of the specified size and prepares it for text encoding tasks.

Parameters:

Name Type Description Default
size str

Model size identifier (e.g., 'ViT-B/32').

required
device device

Device to load the model on.

required

Examples:

>>> import torch
>>> from ultralytics.models.sam.modules.clip import CLIP
>>> clip_model = CLIP("ViT-B/32", device=torch.device("cuda:0"))
>>> text_features = clip_model.encode_text(["a photo of a cat", "a photo of a dog"])
Source code in ultralytics/nn/text_model.py
def __init__(self, size, device):
    """
    Initialize the CLIP text encoder.

    This class implements the TextModel interface using OpenAI's CLIP model for text encoding. It loads
    a pre-trained CLIP model of the specified size and prepares it for text encoding tasks.

    Args:
        size (str): Model size identifier (e.g., 'ViT-B/32').
        device (torch.device): Device to load the model on.

    Examples:
        >>> import torch
        >>> from ultralytics.models.sam.modules.clip import CLIP
        >>> clip_model = CLIP("ViT-B/32", device=torch.device("cuda:0"))
        >>> text_features = clip_model.encode_text(["a photo of a cat", "a photo of a dog"])
    """
    super().__init__()
    self.model = clip.load(size, device=device)[0]
    self.to(device)
    self.device = device
    self.eval()

encode_text

encode_text(texts, dtype=torch.float32)

Encode tokenized texts into normalized feature vectors.

This method processes tokenized text inputs through the CLIP model to generate feature vectors, which are then normalized to unit length. These normalized vectors can be used for text-image similarity comparisons.

Parameters:

Name Type Description Default
texts Tensor

Tokenized text inputs, typically created using the tokenize() method.

required
dtype dtype

Data type for output features. Default is torch.float32.

float32

Returns:

Type Description
Tensor

Normalized text feature vectors with unit length (L2 norm = 1).

Examples:

>>> clip_model = CLIP("ViT-B/32", device="cuda")
>>> tokens = clip_model.tokenize(["a photo of a cat", "a photo of a dog"])
>>> features = clip_model.encode_text(tokens)
>>> features.shape
torch.Size([2, 512])
Source code in ultralytics/nn/text_model.py
@smart_inference_mode()
def encode_text(self, texts, dtype=torch.float32):
    """
    Encode tokenized texts into normalized feature vectors.

    This method processes tokenized text inputs through the CLIP model to generate feature vectors, which are then
    normalized to unit length. These normalized vectors can be used for text-image similarity comparisons.

    Args:
        texts (torch.Tensor): Tokenized text inputs, typically created using the tokenize() method.
        dtype (torch.dtype, optional): Data type for output features. Default is torch.float32.

    Returns:
        (torch.Tensor): Normalized text feature vectors with unit length (L2 norm = 1).

    Examples:
        >>> clip_model = CLIP("ViT-B/32", device="cuda")
        >>> tokens = clip_model.tokenize(["a photo of a cat", "a photo of a dog"])
        >>> features = clip_model.encode_text(tokens)
        >>> features.shape
        torch.Size([2, 512])
    """
    txt_feats = self.model.encode_text(texts).to(dtype)
    txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True)
    return txt_feats

tokenize

tokenize(texts)

Convert input texts to CLIP tokens.

Parameters:

Name Type Description Default
texts str | List[str]

Input text or list of texts to tokenize.

required

Returns:

Type Description
Tensor

Tokenized text tensor with shape (batch_size, context_length) ready for model processing.

Examples:

>>> model = CLIP("ViT-B/32", device="cpu")
>>> tokens = model.tokenize("a photo of a cat")
>>> print(tokens.shape)  # torch.Size([1, 77])
Source code in ultralytics/nn/text_model.py
def tokenize(self, texts):
    """
    Convert input texts to CLIP tokens.

    Args:
        texts (str | List[str]): Input text or list of texts to tokenize.

    Returns:
        (torch.Tensor): Tokenized text tensor with shape (batch_size, context_length) ready for model processing.

    Examples:
        >>> model = CLIP("ViT-B/32", device="cpu")
        >>> tokens = model.tokenize("a photo of a cat")
        >>> print(tokens.shape)  # torch.Size([1, 77])
    """
    return clip.tokenize(texts).to(self.device)





ultralytics.nn.text_model.MobileCLIP

MobileCLIP(size, device)

Bases: TextModel

Implement Apple's MobileCLIP text encoder for efficient text encoding.

This class implements the TextModel interface using Apple's MobileCLIP model, providing efficient text encoding capabilities for vision-language tasks.

Attributes:

Name Type Description
model MobileCLIP

The loaded MobileCLIP model.

tokenizer callable

Tokenizer function for processing text inputs.

device device

Device where the model is loaded.

config_size_map dict

Mapping from size identifiers to model configuration names.

Methods:

Name Description
tokenize

Convert input texts to MobileCLIP tokens.

encode_text

Encode tokenized texts into normalized feature vectors.

Examples:

>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> text_encoder = MobileCLIP(size="s0", device=device)
>>> tokens = text_encoder.tokenize(["a photo of a cat", "a photo of a dog"])
>>> features = text_encoder.encode_text(tokens)

This class implements the TextModel interface using Apple's MobileCLIP model for efficient text encoding.

Parameters:

Name Type Description Default
size str

Model size identifier (e.g., 's0', 's1', 's2', 'b', 'blt').

required
device device

Device to load the model on.

required

Examples:

>>> from ultralytics.nn.modules import MobileCLIP
>>> import torch
>>> model = MobileCLIP("s0", device=torch.device("cpu"))
>>> tokens = model.tokenize(["a photo of a cat", "a photo of a dog"])
>>> features = model.encode_text(tokens)
Source code in ultralytics/nn/text_model.py
def __init__(self, size, device):
    """
    Initialize the MobileCLIP text encoder.

    This class implements the TextModel interface using Apple's MobileCLIP model for efficient text encoding.

    Args:
        size (str): Model size identifier (e.g., 's0', 's1', 's2', 'b', 'blt').
        device (torch.device): Device to load the model on.

    Examples:
        >>> from ultralytics.nn.modules import MobileCLIP
        >>> import torch
        >>> model = MobileCLIP("s0", device=torch.device("cpu"))
        >>> tokens = model.tokenize(["a photo of a cat", "a photo of a dog"])
        >>> features = model.encode_text(tokens)
    """
    super().__init__()
    config = self.config_size_map[size]
    file = f"mobileclip_{size}.pt"
    if not Path(file).is_file():
        from ultralytics import download

        download(f"https://docs-assets.developer.apple.com/ml-research/datasets/mobileclip/{file}")
    self.model = mobileclip.create_model_and_transforms(f"mobileclip_{config}", pretrained=file, device=device)[0]
    self.tokenizer = mobileclip.get_tokenizer(f"mobileclip_{config}")
    self.to(device)
    self.device = device
    self.eval()

encode_text

encode_text(texts, dtype=torch.float32)

Encode tokenized texts into normalized feature vectors.

Parameters:

Name Type Description Default
texts Tensor

Tokenized text inputs.

required
dtype dtype

Data type for output features.

float32

Returns:

Type Description
Tensor

Normalized text feature vectors with L2 normalization applied.

Examples:

>>> model = MobileCLIP("s0", device="cpu")
>>> tokens = model.tokenize(["a photo of a cat", "a photo of a dog"])
>>> features = model.encode_text(tokens)
>>> features.shape
torch.Size([2, 512])  # Actual dimension depends on model size
Source code in ultralytics/nn/text_model.py
@smart_inference_mode()
def encode_text(self, texts, dtype=torch.float32):
    """
    Encode tokenized texts into normalized feature vectors.

    Args:
        texts (torch.Tensor): Tokenized text inputs.
        dtype (torch.dtype, optional): Data type for output features.

    Returns:
        (torch.Tensor): Normalized text feature vectors with L2 normalization applied.

    Examples:
        >>> model = MobileCLIP("s0", device="cpu")
        >>> tokens = model.tokenize(["a photo of a cat", "a photo of a dog"])
        >>> features = model.encode_text(tokens)
        >>> features.shape
        torch.Size([2, 512])  # Actual dimension depends on model size
    """
    text_features = self.model.encode_text(texts).to(dtype)
    text_features /= text_features.norm(p=2, dim=-1, keepdim=True)
    return text_features

tokenize

tokenize(texts)

Convert input texts to MobileCLIP tokens.

Parameters:

Name Type Description Default
texts list[str]

List of text strings to tokenize.

required

Returns:

Type Description
Tensor

Tokenized text inputs with shape (batch_size, sequence_length).

Examples:

>>> model = MobileCLIP("s0", "cpu")
>>> tokens = model.tokenize(["a photo of a cat", "a photo of a dog"])
Source code in ultralytics/nn/text_model.py
def tokenize(self, texts):
    """
    Convert input texts to MobileCLIP tokens.

    Args:
        texts (list[str]): List of text strings to tokenize.

    Returns:
        (torch.Tensor): Tokenized text inputs with shape (batch_size, sequence_length).

    Examples:
        >>> model = MobileCLIP("s0", "cpu")
        >>> tokens = model.tokenize(["a photo of a cat", "a photo of a dog"])
    """
    return self.tokenizer(texts).to(self.device)





ultralytics.nn.text_model.build_text_model

build_text_model(variant, device=None)

Build a text encoding model based on the specified variant.

Parameters:

Name Type Description Default
variant str

Model variant in format "base:size" (e.g., "clip:ViT-B/32" or "mobileclip:s0").

required
device device

Device to load the model on.

None

Returns:

Type Description
TextModel

Instantiated text encoding model.

Examples:

>>> model = build_text_model("clip:ViT-B/32", device=torch.device("cuda"))
>>> model = build_text_model("mobileclip:s0", device=torch.device("cpu"))
Source code in ultralytics/nn/text_model.py
def build_text_model(variant, device=None):
    """
    Build a text encoding model based on the specified variant.

    Args:
        variant (str): Model variant in format "base:size" (e.g., "clip:ViT-B/32" or "mobileclip:s0").
        device (torch.device, optional): Device to load the model on.

    Returns:
        (TextModel): Instantiated text encoding model.

    Examples:
        >>> model = build_text_model("clip:ViT-B/32", device=torch.device("cuda"))
        >>> model = build_text_model("mobileclip:s0", device=torch.device("cpu"))
    """
    base, size = variant.split(":")
    if base == "clip":
        return CLIP(size, device)
    elif base == "mobileclip":
        return MobileCLIP(size, device)
    else:
        raise ValueError(f"Unrecognized base model: '{base}'. Supported base models: 'clip', 'mobileclip'.")



📅 Created 19 days ago ✏️ Updated 19 days ago