Skip to content

Reference for ultralytics/solutions/object_cropper.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/solutions/object_cropper.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.solutions.object_cropper.ObjectCropper

ObjectCropper(**kwargs)

Bases: BaseSolution

A class to manage the cropping of detected objects in a real-time video stream or images.

This class extends the BaseSolution class and provides functionality for cropping objects based on detected bounding boxes. The cropped images are saved to a specified directory for further analysis or usage.

Attributes:

Name Type Description
crop_dir str

Directory where cropped object images are stored.

crop_idx int

Counter for the total number of cropped objects.

iou float

IoU (Intersection over Union) threshold for non-maximum suppression.

conf float

Confidence threshold for filtering detections.

Methods:

Name Description
process

Crops detected objects from the input image and saves them to the output directory.

Examples:

>>> cropper = ObjectCropper()
>>> frame = cv2.imread("frame.jpg")
>>> processed_results = cropper.process(frame)
>>> print(f"Total cropped objects: {cropper.crop_idx}")

Parameters:

Name Type Description Default
**kwargs Any

Keyword arguments passed to the parent class and used for configuration. crop_dir (str): Path to the directory for saving cropped object images.

{}
Source code in ultralytics/solutions/object_cropper.py
def __init__(self, **kwargs):
    """
    Initialize the ObjectCropper class for cropping objects from detected bounding boxes.

    Args:
        **kwargs (Any): Keyword arguments passed to the parent class and used for configuration.
            crop_dir (str): Path to the directory for saving cropped object images.
    """
    super().__init__(**kwargs)

    self.crop_dir = kwargs.get("crop_dir", "cropped-detections")  # Directory for storing cropped detections
    if not os.path.exists(self.crop_dir):
        os.mkdir(self.crop_dir)  # Create directory if it does not exist
    if self.CFG["show"]:
        self.LOGGER.info(
            f"⚠️ show=True disabled for crop solution, results will be saved in the directory named: {self.crop_dir}"
        )
    self.crop_idx = 0  # Initialize counter for total cropped objects
    self.iou = self.CFG["iou"]
    self.conf = self.CFG["conf"] if self.CFG["conf"] is not None else 0.25

process

process(im0)

Crop detected objects from the input image and save them as separate images.

Parameters:

Name Type Description Default
im0 ndarray

The input image containing detected objects.

required

Returns:

Type Description
SolutionResults

A SolutionResults object containing the total number of cropped objects and processed image.

Examples:

>>> cropper = ObjectCropper()
>>> frame = cv2.imread("image.jpg")
>>> results = cropper.process(frame)
>>> print(f"Total cropped objects: {results.total_crop_objects}")
Source code in ultralytics/solutions/object_cropper.py
def process(self, im0):
    """
    Crop detected objects from the input image and save them as separate images.

    Args:
        im0 (numpy.ndarray): The input image containing detected objects.

    Returns:
        (SolutionResults): A SolutionResults object containing the total number of cropped objects and processed image.

    Examples:
        >>> cropper = ObjectCropper()
        >>> frame = cv2.imread("image.jpg")
        >>> results = cropper.process(frame)
        >>> print(f"Total cropped objects: {results.total_crop_objects}")
    """
    results = self.model.predict(
        im0, classes=self.classes, conf=self.conf, iou=self.iou, device=self.CFG["device"]
    )[0]

    for box in results.boxes:
        self.crop_idx += 1
        save_one_box(
            box.xyxy,
            im0,
            file=Path(self.crop_dir) / f"crop_{self.crop_idx}.jpg",
            BGR=True,
        )

    # Return SolutionResults
    return SolutionResults(plot_im=im0, total_crop_objects=self.crop_idx)



📅 Created 9 days ago ✏️ Updated 9 days ago