Перейти к содержимому

Быстрый старт

Установи Ultralytics

Ultralytics Предусмотрены различные способы установки, включая pip, conda и Docker. Установи YOLO с помощью ultralytics Пакет pip для последнего стабильного выпуска или клонированием Ultralytics Репозиторий GitHub чтобы получить самую актуальную версию. С помощью Docker можно запустить пакет в изолированном контейнере, избежав локальной установки.



Смотри: Ultralytics YOLO Краткое руководство по запуску

Установи

PyPI - Python Версия

Установи ultralytics пакет с помощью pip, или обнови существующую установку, запустив pip install -U ultralytics. Посетите Python Package Index (PyPI), чтобы получить более подробную информацию о ultralytics пакет: https://pypi.org/project/ultralytics/.

PyPI - Версия Скачать

# Install the ultralytics package from PyPI
pip install ultralytics

Ты также можешь установить ultralytics пакет прямо из GitHub хранилище. Это может пригодиться, если тебе нужна последняя версия разработки. Убедись, что в твоей системе установлен инструмент командной строки Git. Сайт @main Команда устанавливает main ветвь и может быть изменена на другую ветвь, т.е. @my-branchили полностью удалить, чтобы по умолчанию main Ветка.

# Install the ultralytics package from GitHub
pip install git+https://github.com/ultralytics/ultralytics.git@main

Conda - альтернативный pip менеджер пакетов, который также можно использовать для установки. Подробнее об Anaconda можно узнать на сайте https://anaconda.org/conda-forge/ultralytics. Ultralytics Репозиторий feedstock для обновления пакета conda находится по адресу https://github.com/conda-forge/ultralytics-feedstock/.

Версия Конда Загрузки Conda Рецепт конды Платформы Conda

# Install the ultralytics package using conda
conda install -c conda-forge ultralytics

Примечание

Если ты устанавливаешь в окружении CUDA , то лучше всего установить ultralytics, pytorch и pytorch-cuda в той же команде, чтобы позволить менеджеру пакетов conda разрешить любые конфликты, или же установить pytorch-cuda Последний, чтобы позволить ему отменить CPU-специфический pytorch Если необходимо, то приготовь пакет.

# Install all packages together using conda
conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8 ultralytics

Образ докера Conda

Ultralytics Докер-образы Conda также доступны из DockerHub. Эти изображения основаны на Миниконда3 и это простой способ начать использовать ultralytics в среде Conda.

# Set image name as a variable
t=ultralytics/ultralytics:latest-conda

# Pull the latest ultralytics image from Docker Hub
sudo docker pull $t

# Run the ultralytics image in a container with GPU support
sudo docker run -it --ipc=host --gpus all $t  # all GPUs
sudo docker run -it --ipc=host --gpus '"device=2,3"' $t  # specify GPUs

Клонируй ultralytics репозиторий, если ты заинтересован в участии в разработке или хочешь поэкспериментировать с последним исходным кодом. После клонирования перейди в директорию и установи пакет в редактируемом режиме -e Используя pip.

Последний коммит на GitHub Активность коммитов на GitHub

# Clone the ultralytics repository
git clone https://github.com/ultralytics/ultralytics

# Navigate to the cloned directory
cd ultralytics

# Install the package in editable mode for development
pip install -e .

Используй Docker, чтобы без особых усилий выполнить ultralytics пакет в изолированном контейнере, что гарантирует стабильную и бесперебойную работу в различных средах. Выбрав один из официальных ultralytics изображения из Docker HubТы не только избежишь сложностей локальной установки, но и получишь доступ к проверенной рабочей среде. Ultralytics предлагает 5 основных поддерживаемых образов Docker, каждый из которых разработан для обеспечения высокой совместимости и эффективности для различных платформ и сценариев использования:

Версия образа докера Docker Pulls

  • Dockerfile: GPU образ, рекомендованный для тренировки.
  • Dockerfile-arm64: Оптимизирован для архитектуры ARM64, что позволяет разворачивать его на таких устройствах, как Raspberry Pi и других платформах на базе ARM64.
  • Dockerfile-cpu: Версия CPU на базе Ubuntu, подходящая только для инференции и окружений без GPU.
  • Dockerfile-jetson: Настроен для устройств NVIDIA Jetson, интегрирует поддержку GPU , оптимизированную для этих платформ.
  • Dockerfile-python: Минимальный образ, содержащий только Python и необходимые зависимости, идеально подходит для легких приложений и разработки.
  • Dockerfile-conda: основан на Miniconda3 с установкой conda из пакета ultralytics .

Ниже приведены команды для получения последнего образа и его выполнения:

# Set image name as a variable
t=ultralytics/ultralytics:latest

# Pull the latest ultralytics image from Docker Hub
sudo docker pull $t

# Run the ultralytics image in a container with GPU support
sudo docker run -it --ipc=host --gpus all $t  # all GPUs
sudo docker run -it --ipc=host --gpus '"device=2,3"' $t  # specify GPUs

Приведенная выше команда инициализирует контейнер Docker с последней версией ultralytics Изображение. Сайт -it Флаг назначает псевдо-TTY и держит stdin открытым, позволяя тебе взаимодействовать с контейнером. Флаг --ipc=host Флаг задает хосту пространство имен IPC (Inter-Process Communication), которое необходимо для разделения памяти между процессами. Флаг --gpus all Флаг позволяет получить доступ ко всем доступным GPU внутри контейнера, что крайне важно для задач, требующих вычислений GPU .

Примечание: чтобы работать с файлами на твоей локальной машине внутри контейнера, используй Docker volumes для монтирования локальной директории в контейнер:

# Mount local directory to a directory inside the container
sudo docker run -it --ipc=host --gpus all -v /path/on/host:/path/in/container $t

Alter /path/on/host путь к директории на твоей локальной машине, и /path/in/container с указанием нужного пути внутри Docker-контейнера для доступности.

Для продвинутого использования Docker не стесняйся изучить Ultralytics Docker Guide.

См. ultralytics pyproject.toml файл для получения списка зависимостей. Обрати внимание, что все приведенные примеры устанавливают все необходимые зависимости.

Наконечник

PyTorch Требования зависят от операционной системы и CUDA , поэтому рекомендуется сначала установить PyTorch , следуя инструкциям на сайте https://pytorch.org/get-started/locally.

PyTorch Инструкции по установке

Используй Ultralytics с CLI

Интерфейс командной строки Ultralytics (CLI) позволяет выполнять простые однострочные команды без необходимости создания среды Python . CLI не требует настройки или Python кода. Ты можешь просто запускать все задания из терминала с помощью команды yolo Командуй. Проверь CLI Руководство чтобы узнать больше об использовании YOLO из командной строки.

Пример

Ultralytics yolo Команды используют следующий синтаксис:

yolo TASK MODE ARGS

Смотреть все ARGS в полном Руководство по настройке или с yolo cfg CLI Командуй.

Обучи модель обнаружения в течение 10 эпох с начальной скоростью обучения 0.01

yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01

Прогнозируй видео на YouTube с помощью предварительно обученной модели сегментации при размере изображения 320:

yolo predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320

Вали предварительно обученную модель обнаружения при размере партии 1 и размере изображения 640:

yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640

Экспортируй модель классификации yolo11n в формат ONNX с размером изображения 224 на 128 (не требуется TASK).

yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128

Выполняй специальные команды, чтобы посмотреть версию, просмотреть настройки, запустить проверки и многое другое:

yolo help
yolo checks
yolo version
yolo settings
yolo copy-cfg
yolo cfg

Внимание

Аргументы должны быть переданы как arg=val пары, разделенные знаком равенства = знак и разделены пробелами между парами. Не используй -- Префиксы аргументов или запятые , между аргументами.

  • yolo predict model=yolo11n.pt imgsz=640 conf=0.25
  • yolo predict model yolo11n.pt imgsz 640 conf 0.25 ❌ (отсутствует =)
  • yolo predict model=yolo11n.pt, imgsz=640, conf=0.25 ❌ (не используй ,)
  • yolo predict --model yolo11n.pt --imgsz 640 --conf 0.25 ❌ (не используй --)

CLI Руководство

Используй Ultralytics с Python

YOLOИнтерфейс Python позволяет без проблем интегрировать его в твои проекты Python , облегчая загрузку, запуск и обработку результатов моделирования. Разработанный с учетом простоты и удобства использования, интерфейс Python позволяет пользователям быстро реализовать в своих проектах обнаружение, сегментацию и классификацию объектов. Это делает интерфейс YOLO' Python бесценным инструментом для тех, кто хочет внедрить эти функции в свои Python проекты.

Например, пользователи могут загрузить модель, обучить ее, оценить ее производительность на валидном множестве и даже экспортировать ее в формат ONNX всего несколькими строчками кода. Ознакомься с руководствомPython , чтобы узнать больше об использовании YOLO в своих Python -проектах.

Пример

from ultralytics import YOLO

# Create a new YOLO model from scratch
model = YOLO("yolo11n.yaml")

# Load a pretrained YOLO model (recommended for training)
model = YOLO("yolo11n.pt")

# Train the model using the 'coco8.yaml' dataset for 3 epochs
results = model.train(data="coco8.yaml", epochs=3)

# Evaluate the model's performance on the validation set
results = model.val()

# Perform object detection on an image using the model
results = model("https://ultralytics.com/images/bus.jpg")

# Export the model to ONNX format
success = model.export(format="onnx")

Python Руководство

Ultralytics Настройки

Библиотека Ultralytics предоставляет мощную систему управления настройками, позволяющую осуществлять тонкий контроль над твоими экспериментами. Используя SettingsManager расположенный внутри ultralytics.utils модуль, пользователи могут легко получить доступ к своим настройкам и изменить их. Они хранятся в JSON-файле в директории пользовательских настроек среды, и их можно просматривать или изменять непосредственно в среде Python или через интерфейс командной строки (CLI).

Осмотр настроек

Чтобы получить представление о текущей конфигурации твоих настроек, ты можешь просмотреть их напрямую:

Просмотр настроек

Ты можешь использовать Python для просмотра своих настроек. Начни с того, что импортируй settings объект из ultralytics модуль. Распечатай и верни настройки, используя следующие команды:

from ultralytics import settings

# View all settings
print(settings)

# Return a specific setting
value = settings["runs_dir"]

Кроме того, интерфейс командной строки позволяет тебе проверить свои настройки с помощью простой команды:

yolo settings

Изменение настроек

Ultralytics позволяет пользователям легко изменять свои настройки. Изменения могут быть выполнены следующими способами:

Обновление настроек

В среде Python вызови update метод на settings объект, чтобы изменить настройки:

from ultralytics import settings

# Update a setting
settings.update({"runs_dir": "/path/to/runs"})

# Update multiple settings
settings.update({"runs_dir": "/path/to/runs", "tensorboard": False})

# Reset settings to default values
settings.reset()

Если ты предпочитаешь использовать интерфейс командной строки, то следующие команды позволят тебе изменить настройки:

# Update a setting
yolo settings runs_dir='/path/to/runs'

# Update multiple settings
yolo settings runs_dir='/path/to/runs' tensorboard=False

# Reset settings to default values
yolo settings reset

Понимание настроек

В таблице ниже представлен обзор параметров, доступных для настройки в Ultralytics. Каждый параметр указан вместе с примером значения, типом данных и кратким описанием.

ИмяПример значенияТип данныхОписание
settings_version'0.0.4'strUltralytics Версиянастроек (отличается от версии Ultralytics pip )
datasets_dir'/path/to/datasets'strКаталог, в котором хранятся наборы данных
weights_dir'/path/to/weights'strКаталог, в котором хранятся веса модели
runs_dir'/path/to/runs'strКаталог, в котором хранятся запуски экспериментов
uuid'a1b2c3d4'strУникальный идентификатор для текущих настроек
syncTrueboolНужно ли синхронизировать аналитику и аварии с HUB
api_key''strUltralytics Ключ API HUB
clearmlTrueboolИспользовать ли ClearML ведение журнала
cometTrueboolСтоит ли использовать Comet ML для отслеживания и визуализации экспериментов
dvcTrueboolСтоит ли использовать DVC для отслеживания экспериментов и контроля версий
hubTrueboolИспользовать ли интеграцию Ultralytics HUB
mlflowTrueboolИспользовать ли MLFlow для отслеживания экспериментов
neptuneTrueboolИспользовать ли Neptune для отслеживания экспериментов
raytuneTrueboolИспользовать ли Ray Tune для настройки гиперпараметров
tensorboardTrueboolИспользовать ли TensorBoard для визуализации
wandbTrueboolИспользовать ли Weights & Biases ведение журнала
vscode_msgTrueboolПри обнаружении терминала VS Code включается предложение загрузить расширение Ultralytics-Snippets.

По мере продвижения по своим проектам или экспериментам обязательно пересматривай эти настройки, чтобы убедиться, что они оптимально соответствуют твоим потребностям.

ВОПРОСЫ И ОТВЕТЫ

Как установить Ultralytics с помощью pip?

Чтобы установить Ultralytics с помощью pip, выполни следующую команду:

pip install ultralytics

Для последнего стабильного выпуска это позволит установить ultralytics пакет прямо с сайта Python Package Index (PyPI). Для получения более подробной информации посетите ultralytics пакет на PyPI.

Как вариант, ты можешь установить последнюю версию разработки прямо с GitHub:

pip install git+https://github.com/ultralytics/ultralytics.git

Убедись, что в твоей системе установлен инструмент командной строки Git.

Можно ли установить Ultralytics YOLO с помощью conda?

Да, ты можешь установить Ultralytics YOLO с помощью conda, запустив его:

conda install -c conda-forge ultralytics

Этот метод является отличной альтернативой pip и гарантирует совместимость с другими пакетами в твоем окружении. Для окружения CUDA лучше всего установить ultralytics, pytorch, и pytorch-cuda одновременно, чтобы разрешить все конфликты:

conda install -c pytorch -c nvidia -c conda-forge pytorch torchvision pytorch-cuda=11.8 ultralytics

Для получения более подробных инструкций посети руководство по быстрому запуску Conda.

В чем преимущества использования Docker для запуска Ultralytics YOLO ?

Использование Docker для запуска Ultralytics YOLO обеспечивает изолированную и согласованную среду, гарантируя бесперебойную работу на разных системах. Кроме того, он избавляет от сложности локальной установки. Официальные образы Docker с Ultralytics доступны на Docker Hub, причем разные варианты заточены под среды GPU, CPU, ARM64, NVIDIA Jetson и Conda. Ниже приведены команды для извлечения и запуска последнего образа:

# Pull the latest ultralytics image from Docker Hub
sudo docker pull ultralytics/ultralytics:latest

# Run the ultralytics image in a container with GPU support
sudo docker run -it --ipc=host --gpus all ultralytics/ultralytics:latest

Более подробные инструкции по работе с Docker ты найдешь в руководстве по быстрому запуску Docker.

Как клонировать репозиторий Ultralytics для разработки?

Чтобы клонировать репозиторий Ultralytics и создать среду разработки, выполни следующие действия:

# Clone the ultralytics repository
git clone https://github.com/ultralytics/ultralytics

# Navigate to the cloned directory
cd ultralytics

# Install the package in editable mode for development
pip install -e .

Такой подход позволяет тебе внести свой вклад в проект или поэкспериментировать с последними версиями исходного кода. Для получения более подробной информации посети репозиторийUltralytics GitHub.

Почему я должен использовать Ultralytics YOLO CLI ?

Интерфейс командной строки Ultralytics YOLO (CLI) упрощает выполнение задач по обнаружению объектов, не требуя Python кода. Ты можешь выполнять однострочные команды для таких задач, как обучение, проверка и предсказание, прямо из своего терминала. Основной синтаксис для yolo Команды - это:

yolo TASK MODE ARGS

Например, чтобы обучить модель обнаружения с заданными параметрами:

yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01

Загляни в полное руководствоCLI , чтобы изучить больше команд и примеров использования.

📅 Создано 1 год назад ✏️ Обновлено 12 дней назад

Комментарии