Bỏ để qua phần nội dung

Trực quan hóa dữ liệu nâng cao: Bản đồ nhiệt sử dụng Ultralytics YOLOv8 🚀

Giới thiệu về Heatmaps

Bản đồ nhiệt được tạo bằng Ultralytics YOLOv8 Chuyển đổi dữ liệu phức tạp thành một ma trận được mã hóa màu sắc sống động. Công cụ trực quan này sử dụng một phổ màu sắc để đại diện cho các giá trị dữ liệu khác nhau, trong đó màu sắc ấm hơn cho thấy cường độ cao hơn và tông màu lạnh hơn biểu thị giá trị thấp hơn. Bản đồ nhiệt vượt trội trong việc trực quan hóa các mẫu dữ liệu, mối tương quan và sự bất thường phức tạp, cung cấp một cách tiếp cận dễ tiếp cận và hấp dẫn để giải thích dữ liệu trên các lĩnh vực khác nhau.



Xem: Bản đồ nhiệt sử dụng Ultralytics YOLOv8

Tại sao chọn bản đồ nhiệt để phân tích dữ liệu?

  • Trực quan hóa phân phối dữ liệu trực quan: Bản đồ nhiệt đơn giản hóa việc hiểu tập trung và phân phối dữ liệu, chuyển đổi các bộ dữ liệu phức tạp thành các định dạng trực quan dễ hiểu.
  • Phát hiện mẫu hiệu quả: Bằng cách trực quan hóa dữ liệu ở định dạng bản đồ nhiệt, việc phát hiện xu hướng, cụm và ngoại lệ trở nên dễ dàng hơn, tạo điều kiện phân tích và hiểu biết nhanh hơn.
  • Tăng cường phân tích không gian và ra quyết định: Bản đồ nhiệt là công cụ minh họa các mối quan hệ không gian, hỗ trợ quá trình ra quyết định trong các lĩnh vực như kinh doanh thông minh, nghiên cứu môi trường và quy hoạch đô thị.

Ứng dụng trong thế giới thực

Giao thông vận tải Bán lẻ
Ultralytics YOLOv8 Bản đồ nhiệt giao thông Ultralytics YOLOv8 Bản đồ nhiệt bán lẻ
Ultralytics YOLOv8 Bản đồ nhiệt giao thông Ultralytics YOLOv8 Bản đồ nhiệt bán lẻ

Cấu hình bản đồ nhiệt

  • heatmap_alpha: Đảm bảo giá trị này nằm trong phạm vi (0.0 - 1.0).
  • decay_factor: Được sử dụng để loại bỏ heatmap sau khi một đối tượng không còn trong khung, giá trị của nó cũng phải nằm trong phạm vi (0.0 - 1.0).

Bản đồ nhiệt sử dụng Ultralytics YOLOv8 Ví dụ

import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    classes_names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    tracks = model.track(im0, persist=True, show=False)

    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

line_points = [(20, 400), (1080, 404)]  # line for object counting

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    count_reg_pts=line_points,
    classes_names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    tracks = model.track(im0, persist=True, show=False)
    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Define polygon points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)]

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    count_reg_pts=region_points,
    classes_names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    tracks = model.track(im0, persist=True, show=False)
    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Define region points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    count_reg_pts=region_points,
    classes_names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    tracks = model.track(im0, persist=True, show=False)
    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8s.pt")  # YOLOv8 custom/pretrained model

im0 = cv2.imread("path/to/image.png")  # path to image file
h, w = im0.shape[:2]  # image height and width

# Heatmap Init
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    classes_names=model.names,
)

results = model.track(im0, persist=True)
im0 = heatmap_obj.generate_heatmap(im0, tracks=results)
cv2.imwrite("ultralytics_output.png", im0)
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

classes_for_heatmap = [0, 2]  # classes for heatmap

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    classes_names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    tracks = model.track(im0, persist=True, show=False, classes=classes_for_heatmap)

    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()

Lập luận Heatmap()

Tên Kiểu Mặc định Sự miêu tả
classes_names dict None Từ điển tên lớp.
imw int 0 Chiều rộng hình ảnh.
imh int 0 Chiều cao hình ảnh.
colormap int cv2.COLORMAP_JET Bản đồ màu để sử dụng cho bản đồ nhiệt.
heatmap_alpha float 0.5 Giá trị pha trộn alpha cho lớp phủ bản đồ nhiệt.
view_img bool False Có hiển thị hình ảnh với lớp phủ bản đồ nhiệt hay không.
view_in_counts bool True Có hiển thị số lượng đối tượng đi vào khu vực hay không.
view_out_counts bool True Có hiển thị số lượng đối tượng thoát khỏi khu vực hay không.
count_reg_pts list hoặc None None Các điểm xác định vùng đếm (một đường thẳng hoặc đa giác).
count_txt_color tuple (0, 0, 0) Màu văn bản để hiển thị số lượng.
count_bg_color tuple (255, 255, 255) Màu nền để hiển thị số lượng.
count_reg_color tuple (255, 0, 255) Màu sắc cho vùng đếm.
region_thickness int 5 Độ dày của đường vùng.
line_dist_thresh int 15 Ngưỡng khoảng cách để đếm theo dòng.
line_thickness int 2 Độ dày của các đường được sử dụng trong bản vẽ.
decay_factor float 0.99 Hệ số phân rã cho bản đồ nhiệt để giảm cường độ theo thời gian.
shape str "circle" Hình dạng của các đốm màu bản đồ nhiệt ('vòng tròn' hoặc 'rect').

Lập luận model.track

Tên Kiểu Mặc định Sự miêu tả
source im0 None Thư mục nguồn cho hình ảnh hoặc video
persist bool False Các rãnh liên tục giữa các khung hình
tracker str botsort.yaml Phương pháp theo dõi 'bytetrack' hoặc 'botsort'
conf float 0.3 Ngưỡng tin cậy
iou float 0.5 Ngưỡng IOU
classes list None Lọc kết quả theo lớp, tức là lớp = 0 hoặc lớp = [0,2,3]

Bản đồ nhiệt COLORMAPs

Tên bản đồ màu Sự miêu tả
cv::COLORMAP_AUTUMN Bản đồ màu mùa thu
cv::COLORMAP_BONE Bản đồ màu xương
cv::COLORMAP_JET Bản đồ màu máy bay phản lực
cv::COLORMAP_WINTER Bản đồ màu mùa đông
cv::COLORMAP_RAINBOW Bản đồ màu cầu vồng
cv::COLORMAP_OCEAN Bản đồ màu đại dương
cv::COLORMAP_SUMMER Bản đồ màu mùa hè
cv::COLORMAP_SPRING Bản đồ màu mùa xuân
cv::COLORMAP_COOL Bản đồ màu sắc mát mẻ
cv::COLORMAP_HSV Bản đồ màu HSV (Hue, Saturation, Value)
cv::COLORMAP_PINK Bản đồ màu hồng
cv::COLORMAP_HOT Bản đồ màu nóng
cv::COLORMAP_PARULA Bản đồ màu Parula
cv::COLORMAP_MAGMA Bản đồ màu magma
cv::COLORMAP_INFERNO Bản đồ màu địa ngục
cv::COLORMAP_PLASMA Bản đồ màu plasma
cv::COLORMAP_VIRIDIS Bản đồ màu Viridis
cv::COLORMAP_CIVIDIS Bản đồ màu Cividis
cv::COLORMAP_TWILIGHT Bản đồ màu hoàng hôn
cv::COLORMAP_TWILIGHT_SHIFTED Bản đồ màu Chạng vạng thay đổi
cv::COLORMAP_TURBO Bản đồ màu Turbo
cv::COLORMAP_DEEPGREEN Bản đồ màu xanh lá cây đậm

Các bản đồ màu này thường được sử dụng để trực quan hóa dữ liệu với các biểu diễn màu khác nhau.



Created 2023-12-07, Updated 2024-06-10
Authors: glenn-jocher (11), IvorZhu331 (1), RizwanMunawar (8), AyushExel (1), 1579093407@qq.com (1)

Ý kiến