跳至内容

图像分类数据集概述

数据集格式

torchvision 中分类数据集的文件夹结构通常采用标准格式:

root/
|-- class1/
|   |-- img1.jpg
|   |-- img2.jpg
|   |-- ...
|
|-- class2/
|   |-- img1.jpg
|   |-- img2.jpg
|   |-- ...
|
|-- class3/
|   |-- img1.jpg
|   |-- img2.jpg
|   |-- ...
|
|-- ...

在此文件夹结构中, root 目录包含数据集中每个类别的一个子目录。每个子目录都以相应的类命名,并包含该类的所有图像。每个图像文件都有唯一的名称,通常采用 JPEG 或 PNG 等常用图像文件格式。

** 例子 **

例如,在 CIFAR10 数据集中,文件夹结构如下所示:

cifar-10-/
|
|-- train/
|   |-- airplane/
|   |   |-- 10008_airplane.png
|   |   |-- 10009_airplane.png
|   |   |-- ...
|   |
|   |-- automobile/
|   |   |-- 1000_automobile.png
|   |   |-- 1001_automobile.png
|   |   |-- ...
|   |
|   |-- bird/
|   |   |-- 10014_bird.png
|   |   |-- 10015_bird.png
|   |   |-- ...
|   |
|   |-- ...
|
|-- test/
|   |-- airplane/
|   |   |-- 10_airplane.png
|   |   |-- 11_airplane.png
|   |   |-- ...
|   |
|   |-- automobile/
|   |   |-- 100_automobile.png
|   |   |-- 101_automobile.png
|   |   |-- ...
|   |
|   |-- bird/
|   |   |-- 1000_bird.png
|   |   |-- 1001_bird.png
|   |   |-- ...
|   |
|   |-- ...

在这个例子中, train 目录包含数据集中每个类的子目录,每个类的子目录包含该类的所有图像。目录 test 目录也有类似的结构。目录 root 目录中还包含 CIFAR10 数据集的其他文件。

使用方法

示例

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-cls.pt')  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data='path/to/dataset', epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=path/to/data model=yolov8n-cls.pt epochs=100 imgsz=640

支持的数据集

Ultralytics 支持自动下载以下数据集:

  • Caltech 101:一个包含 101 个对象类别的图像的数据集,用于图像分类任务。
  • 加州理工学院 256:Caltech 101 的扩展版本,包含 256 个物体类别和更具挑战性的图像。
  • CIFAR-10:一个包含 60K 幅 32x32 彩色图像的数据集,分为 10 类,每类 6K 幅图像。
  • CIFAR-100:CIFAR-10 的扩展版本,每类有 100 个对象类别和 600 幅图像。
  • 时尚-MNIST:由 10 个时尚类别的 70,000 张灰度图像组成的数据集,用于图像分类任务。
  • ImageNet:这是一个用于物体检测和图像分类的大型数据集,包含超过 1,400 万张图像和 20,000 个类别。
  • ImageNet-10:ImageNet 的较小子集,包含 10 个类别,用于更快地进行实验和测试。
  • Imagenette:ImageNet 的较小子集,包含 10 个易于区分的类别,可加快训练和测试。
  • Imagewoof:ImageNet 的一个更具挑战性的子集,包含 10 个犬种类别,用于图像分类任务。
  • MNIST:由 70,000 幅手写数字灰度图像组成的数据集,用于图像分类任务。

添加自己的数据集

如果您有自己的数据集,并希望使用Ultralytics 来训练分类模型,请确保数据集格式符合上文 "数据集格式 "中的规定,然后将您的 data 参数的数据集目录。



创建于 2023-11-12,更新于 2024-01-07
作者:glenn-jocher(4),GreatV(1)

评论