对象 365 数据集
Objects365数据集是一个大规模、高质量的数据集,旨在促进物体检测研究,重点关注野生环境中的各种物体。该数据集由Megvii研究团队创建,提供了大量高分辨率图像,并附有涵盖 365 个物体类别的全面注释边界框。
主要功能
- Objects365 包含 365 个对象类别,其中有 200 万张图像和 3,000 多万个边界框。
- 该数据集包括各种场景中的各种物体,为物体检测任务提供了一个丰富而具有挑战性的基准。
- 注释包括物体的边界框,因此适合用于训练和评估物体检测模型。
- Objects365 预先训练的模型明显优于 ImageNet 预先训练的模型,从而在各种任务中实现了更好的泛化。
数据集结构
Objects365 数据集被编排成带有相应注释的单一图像集:
- 图像数据集包括 200 万张高分辨率图像,每张图像都包含 365 个类别中的各种物体。
- 注释图像上标注了 3,000 多万个边界框,为物体检测任务提供了全面的地面实况信息。
应用
Objects365 数据集被广泛用于训练和评估物体检测任务中的深度学习模型。该数据集包含多种物体类别和高质量注释,是计算机视觉领域研究人员和从业人员的宝贵资源。
数据集 YAML
YAML(另一种标记语言)文件用于定义数据集配置。它包含数据集的路径、类和其他相关信息。就 Objects365 数据集而言,YAML 文件包括 Objects365.yaml
文件保存在 https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/Objects365.yaml.
ultralytics/cfg/datasets/Objects365.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Objects365 dataset https://www.objects365.org/ by Megvii
# Documentation: https://docs.ultralytics.com/datasets/detect/objects365/
# Example usage: yolo train data=Objects365.yaml
# parent
# ├── ultralytics
# └── datasets
# └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Objects365 # dataset root dir
train: images/train # train images (relative to 'path') 1742289 images
val: images/val # val images (relative to 'path') 80000 images
test: # test images (optional)
# Classes
names:
0: Person
1: Sneakers
2: Chair
3: Other Shoes
4: Hat
5: Car
6: Lamp
7: Glasses
8: Bottle
9: Desk
10: Cup
11: Street Lights
12: Cabinet/shelf
13: Handbag/Satchel
14: Bracelet
15: Plate
16: Picture/Frame
17: Helmet
18: Book
19: Gloves
20: Storage box
21: Boat
22: Leather Shoes
23: Flower
24: Bench
25: Potted Plant
26: Bowl/Basin
27: Flag
28: Pillow
29: Boots
30: Vase
31: Microphone
32: Necklace
33: Ring
34: SUV
35: Wine Glass
36: Belt
37: Monitor/TV
38: Backpack
39: Umbrella
40: Traffic Light
41: Speaker
42: Watch
43: Tie
44: Trash bin Can
45: Slippers
46: Bicycle
47: Stool
48: Barrel/bucket
49: Van
50: Couch
51: Sandals
52: Basket
53: Drum
54: Pen/Pencil
55: Bus
56: Wild Bird
57: High Heels
58: Motorcycle
59: Guitar
60: Carpet
61: Cell Phone
62: Bread
63: Camera
64: Canned
65: Truck
66: Traffic cone
67: Cymbal
68: Lifesaver
69: Towel
70: Stuffed Toy
71: Candle
72: Sailboat
73: Laptop
74: Awning
75: Bed
76: Faucet
77: Tent
78: Horse
79: Mirror
80: Power outlet
81: Sink
82: Apple
83: Air Conditioner
84: Knife
85: Hockey Stick
86: Paddle
87: Pickup Truck
88: Fork
89: Traffic Sign
90: Balloon
91: Tripod
92: Dog
93: Spoon
94: Clock
95: Pot
96: Cow
97: Cake
98: Dining Table
99: Sheep
100: Hanger
101: Blackboard/Whiteboard
102: Napkin
103: Other Fish
104: Orange/Tangerine
105: Toiletry
106: Keyboard
107: Tomato
108: Lantern
109: Machinery Vehicle
110: Fan
111: Green Vegetables
112: Banana
113: Baseball Glove
114: Airplane
115: Mouse
116: Train
117: Pumpkin
118: Soccer
119: Skiboard
120: Luggage
121: Nightstand
122: Tea pot
123: Telephone
124: Trolley
125: Head Phone
126: Sports Car
127: Stop Sign
128: Dessert
129: Scooter
130: Stroller
131: Crane
132: Remote
133: Refrigerator
134: Oven
135: Lemon
136: Duck
137: Baseball Bat
138: Surveillance Camera
139: Cat
140: Jug
141: Broccoli
142: Piano
143: Pizza
144: Elephant
145: Skateboard
146: Surfboard
147: Gun
148: Skating and Skiing shoes
149: Gas stove
150: Donut
151: Bow Tie
152: Carrot
153: Toilet
154: Kite
155: Strawberry
156: Other Balls
157: Shovel
158: Pepper
159: Computer Box
160: Toilet Paper
161: Cleaning Products
162: Chopsticks
163: Microwave
164: Pigeon
165: Baseball
166: Cutting/chopping Board
167: Coffee Table
168: Side Table
169: Scissors
170: Marker
171: Pie
172: Ladder
173: Snowboard
174: Cookies
175: Radiator
176: Fire Hydrant
177: Basketball
178: Zebra
179: Grape
180: Giraffe
181: Potato
182: Sausage
183: Tricycle
184: Violin
185: Egg
186: Fire Extinguisher
187: Candy
188: Fire Truck
189: Billiards
190: Converter
191: Bathtub
192: Wheelchair
193: Golf Club
194: Briefcase
195: Cucumber
196: Cigar/Cigarette
197: Paint Brush
198: Pear
199: Heavy Truck
200: Hamburger
201: Extractor
202: Extension Cord
203: Tong
204: Tennis Racket
205: Folder
206: American Football
207: earphone
208: Mask
209: Kettle
210: Tennis
211: Ship
212: Swing
213: Coffee Machine
214: Slide
215: Carriage
216: Onion
217: Green beans
218: Projector
219: Frisbee
220: Washing Machine/Drying Machine
221: Chicken
222: Printer
223: Watermelon
224: Saxophone
225: Tissue
226: Toothbrush
227: Ice cream
228: Hot-air balloon
229: Cello
230: French Fries
231: Scale
232: Trophy
233: Cabbage
234: Hot dog
235: Blender
236: Peach
237: Rice
238: Wallet/Purse
239: Volleyball
240: Deer
241: Goose
242: Tape
243: Tablet
244: Cosmetics
245: Trumpet
246: Pineapple
247: Golf Ball
248: Ambulance
249: Parking meter
250: Mango
251: Key
252: Hurdle
253: Fishing Rod
254: Medal
255: Flute
256: Brush
257: Penguin
258: Megaphone
259: Corn
260: Lettuce
261: Garlic
262: Swan
263: Helicopter
264: Green Onion
265: Sandwich
266: Nuts
267: Speed Limit Sign
268: Induction Cooker
269: Broom
270: Trombone
271: Plum
272: Rickshaw
273: Goldfish
274: Kiwi fruit
275: Router/modem
276: Poker Card
277: Toaster
278: Shrimp
279: Sushi
280: Cheese
281: Notepaper
282: Cherry
283: Pliers
284: CD
285: Pasta
286: Hammer
287: Cue
288: Avocado
289: Hami melon
290: Flask
291: Mushroom
292: Screwdriver
293: Soap
294: Recorder
295: Bear
296: Eggplant
297: Board Eraser
298: Coconut
299: Tape Measure/Ruler
300: Pig
301: Showerhead
302: Globe
303: Chips
304: Steak
305: Crosswalk Sign
306: Stapler
307: Camel
308: Formula 1
309: Pomegranate
310: Dishwasher
311: Crab
312: Hoverboard
313: Meatball
314: Rice Cooker
315: Tuba
316: Calculator
317: Papaya
318: Antelope
319: Parrot
320: Seal
321: Butterfly
322: Dumbbell
323: Donkey
324: Lion
325: Urinal
326: Dolphin
327: Electric Drill
328: Hair Dryer
329: Egg tart
330: Jellyfish
331: Treadmill
332: Lighter
333: Grapefruit
334: Game board
335: Mop
336: Radish
337: Baozi
338: Target
339: French
340: Spring Rolls
341: Monkey
342: Rabbit
343: Pencil Case
344: Yak
345: Red Cabbage
346: Binoculars
347: Asparagus
348: Barbell
349: Scallop
350: Noddles
351: Comb
352: Dumpling
353: Oyster
354: Table Tennis paddle
355: Cosmetics Brush/Eyeliner Pencil
356: Chainsaw
357: Eraser
358: Lobster
359: Durian
360: Okra
361: Lipstick
362: Cosmetics Mirror
363: Curling
364: Table Tennis
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from tqdm import tqdm
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.downloads import download
from ultralytics.utils.ops import xyxy2xywhn
import numpy as np
from pathlib import Path
check_requirements(('pycocotools>=2.0',))
from pycocotools.coco import COCO
# Make Directories
dir = Path(yaml['path']) # dataset root dir
for p in 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
for q in 'train', 'val':
(dir / p / q).mkdir(parents=True, exist_ok=True)
# Train, Val Splits
for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
print(f"Processing {split} in {patches} patches ...")
images, labels = dir / 'images' / split, dir / 'labels' / split
# Download
url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
if split == 'train':
download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir) # annotations json
download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, threads=8)
elif split == 'val':
download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir) # annotations json
download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, threads=8)
download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, threads=8)
# Move
for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
f.rename(images / f.name) # move to /images/{split}
# Labels
coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
for cid, cat in enumerate(names):
catIds = coco.getCatIds(catNms=[cat])
imgIds = coco.getImgIds(catIds=catIds)
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
width, height = im["width"], im["height"]
path = Path(im["file_name"]) # image filename
try:
with open(labels / path.with_suffix('.txt').name, 'a') as file:
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
for a in coco.loadAnns(annIds):
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4)
x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped
file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
except Exception as e:
print(e)
使用方法
要在图像大小为 640 的 Objects365 数据集上训练 YOLO11n 模型 100次,可以使用以下代码片段。有关可用参数的完整列表,请参阅模型训练页面。
列车示例
样本数据和注释
Objects365 数据集包含一组不同的高分辨率图像,其中有 365 个类别的物体,为物体检测任务提供了丰富的背景信息。以下是该数据集中的一些图像示例:
- 物体 365:该图像展示了一个物体检测示例,其中的物体都标注了边界框。该数据集提供了大量图像,有助于为这项任务开发模型。
该示例展示了 Objects365 数据集中数据的多样性和复杂性,并强调了准确的物体检测对于计算机视觉应用的重要性。
引文和致谢
如果您在研究或开发工作中使用 Objects365 数据集,请引用以下论文:
@inproceedings{shao2019objects365,
title={Objects365: A Large-scale, High-quality Dataset for Object Detection},
author={Shao, Shuai and Li, Zeming and Zhang, Tianyuan and Peng, Chao and Yu, Gang and Li, Jing and Zhang, Xiangyu and Sun, Jian},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={8425--8434},
year={2019}
}
我们在此向创建和维护 Objects365 数据集的研究团队表示感谢,该数据集是计算机视觉研究界的宝贵资源。有关 Objects365 数据集及其创建者的更多信息,请访问Objects365 数据集网站。
常见问题
Objects365 数据集的用途是什么?
Objects365 数据集专为机器学习和计算机视觉中的物体检测任务而设计。它提供了一个大规模、高质量的数据集,其中包含 200 万张注释图像和 3,000 万个边界框,涵盖 365 个类别。利用这样一个多样化的数据集,有助于提高物体检测模型的性能和通用性,使其成为该领域研究和开发的无价之宝。
如何在 Objects365 数据集上训练YOLO11 模型?
要使用 Objects365 数据集对 YOLO11n 模型进行 100 次历时训练(图像大小为 640),请按照以下说明操作:
列车示例
有关可用参数的完整列表,请参阅 "培训"页面。
为什么要在对象检测项目中使用 Objects365 数据集?
Objects365 数据集为物体检测任务提供了多项优势:
- 多样性:它包含 200 万张不同场景下的物体图像,涵盖 365 个类别。
- 高质量注释:3,000 多万个边界框提供全面的地面实况数据。
- 性能在 Objects365 上预先训练的模型明显优于在 ImageNet 等数据集上训练的模型,从而获得更好的泛化效果。
在哪里可以找到 Objects365 数据集的 YAML 配置文件?
Objects365 数据集的 YAML 配置文件位于Objects365.yaml。该文件包含数据集路径和类标签等基本信息,对于设置训练环境至关重要。
Objects365 的数据集结构如何增强物体检测建模?
Objects365 数据集包含 200 万张高分辨率图像和超过 3000 万个边界框的全面注释。这种结构可确保为训练物体检测的深度学习模型提供一个强大的数据集,提供各种各样的物体和场景。这种多样性和数量有助于开发出更准确、更能在现实世界应用中很好推广的模型。有关数据集结构的更多详情,请参阅数据集 YAML部分。