跳至内容

高级数据可视化:使用Ultralytics YOLOv8 绘制热图 🚀

热图简介

生成的热图 Ultralytics YOLOv8将复杂的数据转换成生动的彩色编码矩阵。这种可视化工具采用色谱来表示不同的数据值,暖色调表示较高的强度,冷色调表示较低的值。热图在可视化复杂的数据模式、相关性和异常情况方面表现出色,为不同领域的数据解读提供了一种易于理解且引人入胜的方法。



观看: 使用热图Ultralytics YOLOv8

为什么选择热图进行数据分析?

  • 直观的数据分布可视化:热图可简化对数据集中和分布的理解,将复杂的数据集转换为易于理解的可视化格式。
  • 高效模式检测:通过热图格式的可视化数据,可以更容易地发现趋势、群组和异常值,从而促进更快地分析和洞察。
  • 增强空间分析和决策:热图有助于说明空间关系,帮助商业智能、环境研究和城市规划等领域的决策过程。

真实世界的应用

交通运输 零售
Ultralytics YOLOv8 交通热图 Ultralytics YOLOv8 零售业热图
Ultralytics YOLOv8 交通热图 Ultralytics YOLOv8 零售业热图

热图配置

  • heatmap_alpha:确保该值在 (0.0 - 1.0) 范围内。
  • decay_factor:用于在帧中不再存在对象后删除热图,其值也应在 (0.0 - 1.0) 范围内。

热图使用Ultralytics YOLOv8 示例

import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    tracks = model.track(im0, persist=True, show=False)

    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

line_points = [(20, 400), (1080, 404)]  # line for object counting

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    count_reg_pts=line_points,
    names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    tracks = model.track(im0, persist=True, show=False)
    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Define polygon points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)]

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    count_reg_pts=region_points,
    names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    tracks = model.track(im0, persist=True, show=False)
    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

# Define region points
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    count_reg_pts=region_points,
    names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    tracks = model.track(im0, persist=True, show=False)
    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8s.pt")  # YOLOv8 custom/pretrained model

im0 = cv2.imread("path/to/image.png")  # path to image file
h, w = im0.shape[:2]  # image height and width

# Heatmap Init
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    names=model.names,
)

results = model.track(im0, persist=True)
im0 = heatmap_obj.generate_heatmap(im0, tracks=results)
cv2.imwrite("ultralytics_output.png", im0)
import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
assert cap.isOpened(), "Error reading video file"
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# Video writer
video_writer = cv2.VideoWriter("heatmap_output.avi", cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))

classes_for_heatmap = [0, 2]  # classes for heatmap

# Init heatmap
heatmap_obj = solutions.Heatmap(
    colormap=cv2.COLORMAP_PARULA,
    view_img=True,
    shape="circle",
    names=model.names,
)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        print("Video frame is empty or video processing has been successfully completed.")
        break
    tracks = model.track(im0, persist=True, show=False, classes=classes_for_heatmap)

    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    video_writer.write(im0)

cap.release()
video_writer.release()
cv2.destroyAllWindows()

论据 Heatmap()

名称 类型 默认值 说明
names list None 类名词典
imw int 0 图像宽度。
imh int 0 图像高度。
colormap int cv2.COLORMAP_JET 热图使用的颜色图。
heatmap_alpha float 0.5 热图叠加的 Alpha 混合值。
view_img bool False 是否使用热图叠加显示图像。
view_in_counts bool True 是否显示进入区域的对象计数。
view_out_counts bool True 是否显示退出区域的对象计数。
count_reg_pts listNone None 定义计数区域的点(直线或多边形)。
count_txt_color tuple (0, 0, 0) 显示计数的文本颜色。
count_bg_color tuple (255, 255, 255) 显示计数的背景颜色。
count_reg_color tuple (255, 0, 255) 计数区域的颜色。
region_thickness int 5 区域线的厚度。
line_dist_thresh int 15 线性计数的距离阈值
line_thickness int 2 绘画线条的粗细。
decay_factor float 0.99 热图的衰减系数,用于降低随时间变化的强度。
shape str "circle" 热图 Blobs 的形状("圆形 "或 "矩形")。

论据 model.track

论据 类型 默认值 说明
source str None Specifies the source directory for images or videos. Supports file paths and URLs.
persist bool False Enables persistent tracking of objects between frames, maintaining IDs across video sequences.
tracker str botsort.yaml Specifies the tracking algorithm to use, e.g., bytetrack.yamlbotsort.yaml.
conf float 0.3 Sets the confidence threshold for detections; lower values allow more objects to be tracked but may include false positives.
iou float 0.5 Sets the Intersection over Union (IoU) threshold for filtering overlapping detections.
classes list None Filters results by class index. For example, classes=[0, 2, 3] only tracks the specified classes.
verbose bool True Controls the display of tracking results, providing a visual output of tracked objects.

热图 COLORMAPs

彩色地图名称 说明
cv::COLORMAP_AUTUMN 秋色地图
cv::COLORMAP_BONE 骨骼颜色图
cv::COLORMAP_JET 喷气彩图
cv::COLORMAP_WINTER 冬季彩色地图
cv::COLORMAP_RAINBOW 彩虹颜色地图
cv::COLORMAP_OCEAN 海洋颜色地图
cv::COLORMAP_SUMMER 夏季彩色地图
cv::COLORMAP_SPRING 春色地图
cv::COLORMAP_COOL 酷炫的彩色地图
cv::COLORMAP_HSV HSV(色调、饱和度、值)色彩图
cv::COLORMAP_PINK 粉色地图
cv::COLORMAP_HOT 热门彩色地图
cv::COLORMAP_PARULA 帕鲁拉彩图
cv::COLORMAP_MAGMA 岩浆颜色图
cv::COLORMAP_INFERNO 地狱彩色地图
cv::COLORMAP_PLASMA 等离子彩图
cv::COLORMAP_VIRIDIS Viridis 彩色地图
cv::COLORMAP_CIVIDIS Cividis 彩色地图
cv::COLORMAP_TWILIGHT 黄昏彩色地图
cv::COLORMAP_TWILIGHT_SHIFTED 偏移的曙光色彩图
cv::COLORMAP_TURBO 涡轮颜色图
cv::COLORMAP_DEEPGREEN 深绿色彩图

这些颜色图通常用于用不同的颜色表示可视化数据。

常见问题

Ultralytics YOLOv8 如何生成热图及其优势是什么?

Ultralytics YOLOv8 通过将复杂数据转换为彩色编码矩阵,不同色调代表数据强度,从而生成热图。热图更容易直观地显示数据中的模式、相关性和异常情况。较暖的色调表示较高的数值,而较冷的色调表示较低的数值。其主要优点包括直观可视化数据分布、高效模式检测和增强决策空间分析。有关详细信息和配置选项,请参阅热图配置部分。

能否使用Ultralytics YOLOv8 同时执行对象跟踪和生成热图?

是的,Ultralytics YOLOv8 支持同时进行对象跟踪和热图生成。这可以通过其 Heatmap 解决方案集成了对象跟踪模型。为此,您需要初始化热图对象并使用YOLOv8 的跟踪功能。下面是一个简单的示例:

import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
heatmap_obj = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, view_img=True, shape="circle", names=model.names)

while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        break
    tracks = model.track(im0, persist=True, show=False)
    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    cv2.imshow("Heatmap", im0)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

如需进一步指导,请查看跟踪模式页面。

Ultralytics YOLOv8 热图与 OpenCV 或 Matplotlib 等其他数据可视化工具有何不同?

Ultralytics YOLOv8 热图专为与其对象检测和跟踪模型集成而设计,为实时数据分析提供了端到端的解决方案。与 OpenCV 或 Matplotlib 等通用可视化工具不同,YOLOv8 热图针对性能和自动处理进行了优化,支持持续跟踪、衰减系数调整和实时视频叠加等功能。有关YOLOv8 独特功能的更多信息,请访问Ultralytics YOLOv8 简介

如何使用Ultralytics YOLOv8 在热图中只显示特定对象类别?

您可以通过在 track() YOLO 方法。例如,如果您只想可视化汽车和人(假设它们的类指数分别为 0 和 2),您可以设置 classes 参数。

import cv2

from ultralytics import YOLO, solutions

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
heatmap_obj = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, view_img=True, shape="circle", names=model.names)

classes_for_heatmap = [0, 2]  # Classes to visualize
while cap.isOpened():
    success, im0 = cap.read()
    if not success:
        break
    tracks = model.track(im0, persist=True, show=False, classes=classes_for_heatmap)
    im0 = heatmap_obj.generate_heatmap(im0, tracks)
    cv2.imshow("Heatmap", im0)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

企业在数据分析中为什么要选择Ultralytics YOLOv8 来生成热图?

Ultralytics YOLOv8 高级对象检测和实时热图生成的无缝集成,使其成为希望更有效地实现数据可视化的企业的理想选择。它的主要优势包括直观的数据分布可视化、高效的模式检测和增强的空间分析,以便更好地做出决策。此外,YOLOv8 的尖端功能(如持续跟踪、可定制的颜色图以及对各种导出格式的支持)使其在综合数据分析方面优于TensorFlow 和 OpenCV 等其他工具。了解有关商业应用的更多信息,请访问Ultralytics Plans


📅创建于 9 个月前 ✏️已更新 10 天前

评论