跳至内容

使用Ultralytics YOLOv8 🚀 进行实例分割和跟踪

什么是实例分割?

Ultralytics YOLOv8实例分割包括识别和勾勒图像中的单个物体,提供对空间分布的详细了解。与语义分割不同的是,它对每个物体进行唯一标记和精确划分,这对物体检测和医学成像等任务至关重要。

Ultralytics 软件包中有两种类型的实例分割跟踪:

  • 使用类对象进行实例分割:每个类对象都有一种独特的颜色,以便进行清晰的视觉区分。

  • 使用对象轨迹进行实例分割:每个轨迹都用不同的颜色表示,便于识别和跟踪。



观看: 使用对象跟踪技术进行实例分割Ultralytics YOLOv8

样品

实例分割 实例分割 + 物体跟踪
Ultralytics 实例分割 Ultralytics 利用对象跟踪进行实例分割
Ultralytics 实例分割 😍 Ultralytics 利用对象跟踪进行实例分割 🔥

实例分割和跟踪

import cv2

from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors

model = YOLO("yolov8n-seg.pt")  # segmentation model
names = model.model.names
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter("instance-segmentation.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))

while True:
    ret, im0 = cap.read()
    if not ret:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    results = model.predict(im0)
    annotator = Annotator(im0, line_width=2)

    if results[0].masks is not None:
        clss = results[0].boxes.cls.cpu().tolist()
        masks = results[0].masks.xy
        for mask, cls in zip(masks, clss):
            color = colors(int(cls), True)
            txt_color = annotator.get_txt_color(color)
            annotator.seg_bbox(mask=mask, mask_color=color, label=names[int(cls)], txt_color=txt_color)

    out.write(im0)
    cv2.imshow("instance-segmentation", im0)

    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

out.release()
cap.release()
cv2.destroyAllWindows()
from collections import defaultdict

import cv2

from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors

track_history = defaultdict(lambda: [])

model = YOLO("yolov8n-seg.pt")  # segmentation model
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter("instance-segmentation-object-tracking.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))

while True:
    ret, im0 = cap.read()
    if not ret:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    annotator = Annotator(im0, line_width=2)

    results = model.track(im0, persist=True)

    if results[0].boxes.id is not None and results[0].masks is not None:
        masks = results[0].masks.xy
        track_ids = results[0].boxes.id.int().cpu().tolist()

        for mask, track_id in zip(masks, track_ids):
            color = colors(int(track_id), True)
            txt_color = annotator.get_txt_color(color)
            annotator.seg_bbox(mask=mask, mask_color=color, label=str(track_id), txt_color=txt_color)

    out.write(im0)
    cv2.imshow("instance-segmentation-object-tracking", im0)

    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

out.release()
cap.release()
cv2.destroyAllWindows()

seg_bbox 论据

名称 类型 默认值 说明
mask array None 分割掩码坐标
mask_color RGB (255, 0, 255) 每个分割框的屏蔽颜色
label str None 分段对象的标签
txt_color RGB None 被分割和跟踪物体的标签颜色

备注

如有任何疑问,请随时在Ultralytics 问题板块或下面提到的讨论板块发布您的问题。

常见问题

如何使用Ultralytics YOLOv8 执行实例分割?

要使用Ultralytics YOLOv8 执行实例分割,请使用YOLOv8 的分割版本初始化YOLO 模型,并通过它处理视频帧。下面是一个简化的代码示例:

示例

import cv2

from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors

model = YOLO("yolov8n-seg.pt")  # segmentation model
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter("instance-segmentation.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))

while True:
    ret, im0 = cap.read()
    if not ret:
        break

    results = model.predict(im0)
    annotator = Annotator(im0, line_width=2)

    if results[0].masks is not None:
        clss = results[0].boxes.cls.cpu().tolist()
        masks = results[0].masks.xy
        for mask, cls in zip(masks, clss):
            annotator.seg_bbox(mask=mask, mask_color=colors(int(cls), True), det_label=model.model.names[int(cls)])

    out.write(im0)
    cv2.imshow("instance-segmentation", im0)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

out.release()
cap.release()
cv2.destroyAllWindows()

有关实例分割的更多信息,请参阅Ultralytics YOLOv8 指南

Ultralytics YOLOv8 中的实例分割和对象跟踪有什么区别?

实例分割可识别和勾勒图像中的单个物体,为每个物体赋予独特的标签和遮罩。物体追踪则是在此基础上的延伸,它能在不同的视频帧中为物体分配一致的标签,从而便于在一段时间内对同一物体进行连续追踪。更多有关区别的信息,请参阅Ultralytics YOLOv8 文档

例如,在分割和跟踪方面,为什么要使用Ultralytics YOLOv8 而不是其他模型,如掩码 R-CNN 或更快 R-CNN?

Ultralytics YOLOv8 YOLOv8 与 HUB 无缝集成,使用户能够高效地管理模型、数据集和训练管道。有关 优点的更多信息,请访问Ultralytics YOLOv8 Ultralytics 博客

如何使用Ultralytics YOLOv8 实现对象跟踪?

要实施对象跟踪,请使用 model.track 方法,并确保每个对象的 ID 在各帧之间分配一致。下面是一个简单的例子:

示例

from collections import defaultdict

import cv2

from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors

track_history = defaultdict(lambda: [])

model = YOLO("yolov8n-seg.pt")  # segmentation model
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter("instance-segmentation-object-tracking.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))

while True:
    ret, im0 = cap.read()
    if not ret:
        break

    annotator = Annotator(im0, line_width=2)
    results = model.track(im0, persist=True)

    if results[0].boxes.id is not None and results[0].masks is not None:
        masks = results[0].masks.xy
        track_ids = results[0].boxes.id.int().cpu().tolist()

        for mask, track_id in zip(masks, track_ids):
            annotator.seg_bbox(mask=mask, mask_color=colors(track_id, True), track_label=str(track_id))

    out.write(im0)
    cv2.imshow("instance-segmentation-object-tracking", im0)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

out.release()
cap.release()
cv2.destroyAllWindows()

更多信息,请参阅实例分割和跟踪部分

Ultralytics 是否提供了适合用于训练YOLOv8 模型(例如分割和跟踪)的数据集?

是的,Ultralytics 提供了多个适合训练YOLOv8 模型的数据集,包括分割和跟踪数据集。数据集示例、结构和使用说明可在Ultralytics Datasets 文档中找到。


📅创建于 9 个月前 ✏️已更新 9 天前

评论