跳至内容

使用Ultralytics YOLOv8 绘制 VisionEye 视图对象映射 🚀

什么是 VisionEye Object Mapping?

Ultralytics YOLOv8VisionEye 可让计算机模拟人眼的观察精度,识别并精确定位物体。这一功能使计算机能够辨别并聚焦于特定物体,就像人眼从特定视角观察细节一样。

样品

VisionEye 视图 带有物体跟踪功能的 VisionEye 视图 带有距离计算功能的 VisionEye 视图
使用 VisionEye 视图对象映射Ultralytics YOLOv8 使用 VisionEye 视图对象映射与对象跟踪功能Ultralytics YOLOv8 使用 VisionEye View 进行距离计算Ultralytics YOLOv8
使用 VisionEye 视图对象映射Ultralytics YOLOv8 使用 VisionEye 视图对象映射与对象跟踪功能Ultralytics YOLOv8 使用 VisionEye View 进行距离计算Ultralytics YOLOv8

使用 VisionEye 物体映射YOLOv8

import cv2

from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors

model = YOLO("yolov8n.pt")
names = model.model.names
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter("visioneye-pinpoint.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))

center_point = (-10, h)

while True:
    ret, im0 = cap.read()
    if not ret:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    results = model.predict(im0)
    boxes = results[0].boxes.xyxy.cpu()
    clss = results[0].boxes.cls.cpu().tolist()

    annotator = Annotator(im0, line_width=2)

    for box, cls in zip(boxes, clss):
        annotator.box_label(box, label=names[int(cls)], color=colors(int(cls)))
        annotator.visioneye(box, center_point)

    out.write(im0)
    cv2.imshow("visioneye-pinpoint", im0)

    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

out.release()
cap.release()
cv2.destroyAllWindows()
import cv2

from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator, colors

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter("visioneye-pinpoint.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))

center_point = (-10, h)

while True:
    ret, im0 = cap.read()
    if not ret:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    annotator = Annotator(im0, line_width=2)

    results = model.track(im0, persist=True)
    boxes = results[0].boxes.xyxy.cpu()

    if results[0].boxes.id is not None:
        track_ids = results[0].boxes.id.int().cpu().tolist()

        for box, track_id in zip(boxes, track_ids):
            annotator.box_label(box, label=str(track_id), color=colors(int(track_id)))
            annotator.visioneye(box, center_point)

    out.write(im0)
    cv2.imshow("visioneye-pinpoint", im0)

    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

out.release()
cap.release()
cv2.destroyAllWindows()
import math

import cv2

from ultralytics import YOLO
from ultralytics.utils.plotting import Annotator

model = YOLO("yolov8s.pt")
cap = cv2.VideoCapture("Path/to/video/file.mp4")

w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

out = cv2.VideoWriter("visioneye-distance-calculation.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))

center_point = (0, h)
pixel_per_meter = 10

txt_color, txt_background, bbox_clr = ((0, 0, 0), (255, 255, 255), (255, 0, 255))

while True:
    ret, im0 = cap.read()
    if not ret:
        print("Video frame is empty or video processing has been successfully completed.")
        break

    annotator = Annotator(im0, line_width=2)

    results = model.track(im0, persist=True)
    boxes = results[0].boxes.xyxy.cpu()

    if results[0].boxes.id is not None:
        track_ids = results[0].boxes.id.int().cpu().tolist()

        for box, track_id in zip(boxes, track_ids):
            annotator.box_label(box, label=str(track_id), color=bbox_clr)
            annotator.visioneye(box, center_point)

            x1, y1 = int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)  # Bounding box centroid

            distance = (math.sqrt((x1 - center_point[0]) ** 2 + (y1 - center_point[1]) ** 2)) / pixel_per_meter

            text_size, _ = cv2.getTextSize(f"Distance: {distance:.2f} m", cv2.FONT_HERSHEY_SIMPLEX, 1.2, 3)
            cv2.rectangle(im0, (x1, y1 - text_size[1] - 10), (x1 + text_size[0] + 10, y1), txt_background, -1)
            cv2.putText(im0, f"Distance: {distance:.2f} m", (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 1.2, txt_color, 3)

    out.write(im0)
    cv2.imshow("visioneye-distance-calculation", im0)

    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

out.release()
cap.release()
cv2.destroyAllWindows()

visioneye 论据

名称 类型 默认值 说明
color tuple (235, 219, 11) 线条和对象中心点颜色
pin_color tuple (255, 0, 255) VisionEye 精确定位色彩

备注

如有任何疑问,请随时在Ultralytics 问题板块或下面提到的讨论板块发布您的问题。

常见问题

如何通过Ultralytics YOLOv8 开始使用 VisionEye Object Mapping?

要开始在Ultralytics YOLOv8 上使用 VisionEye Object Mapping,首先需要通过 pip 安装Ultralytics YOLO 软件包。然后,您可以使用文档中提供的示例代码使用 VisionEye 设置对象检测。下面是一个简单的示例:

import cv2

from ultralytics import YOLO

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")

while True:
    ret, frame = cap.read()
    if not ret:
        break

    results = model.predict(frame)
    for result in results:
        # Perform custom logic with result
        pass

    cv2.imshow("visioneye", frame)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

VisionEye 使用Ultralytics YOLOv8 进行物体跟踪的主要功能是什么?

VisionEye 的物体跟踪功能(Ultralytics YOLOv8 )可让用户跟踪视频帧内物体的移动。主要功能包括

  1. 实时物体跟踪:可在物体移动时对其进行跟踪。
  2. 物体识别:利用YOLOv8 强大的检测算法。
  3. 距离计算计算物体与指定点之间的距离。
  4. 注释和可视化:为跟踪对象提供可视化标记。

下面是使用 VisionEye 进行跟踪的简短代码片段:

import cv2

from ultralytics import YOLO

model = YOLO("yolov8n.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")

while True:
    ret, frame = cap.read()
    if not ret:
        break

    results = model.track(frame, persist=True)
    for result in results:
        # Annotate and visualize tracking
        pass

    cv2.imshow("visioneye-tracking", frame)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

有关全面指南,请访问VisionEye Object Mapping with Object Tracking

如何使用 VisionEye 的YOLOv8 模型计算距离?

VisionEye 和Ultralytics YOLOv8 的距离计算包括确定检测到的物体与帧中指定点的距离。它增强了空间分析能力,在自动驾驶和监控等应用中非常有用。

下面是一个简化的例子:

import math

import cv2

from ultralytics import YOLO

model = YOLO("yolov8s.pt")
cap = cv2.VideoCapture("path/to/video/file.mp4")
center_point = (0, 480)  # Example center point
pixel_per_meter = 10

while True:
    ret, frame = cap.read()
    if not ret:
        break

    results = model.track(frame, persist=True)
    for result in results:
        # Calculate distance logic
        distances = [
            (math.sqrt((box[0] - center_point[0]) ** 2 + (box[1] - center_point[1]) ** 2)) / pixel_per_meter
            for box in results
        ]

    cv2.imshow("visioneye-distance", frame)
    if cv2.waitKey(1) & 0xFF == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

有关详细说明,请参阅带有距离计算功能的 VisionEye

为什么要使用Ultralytics YOLOv8 进行对象映射和跟踪?

Ultralytics YOLOv8 以速度快、精度高、易于集成而闻名,是物体映射和跟踪的首选。主要优势包括

  1. 最先进的性能:实时物体检测精度高。
  2. 灵活性:支持检测、跟踪和距离计算等各种任务。
  3. 社区和支持:丰富的文档和活跃的 GitHub 社区,可用于故障排除和改进。
  4. 易用性:直观的应用程序接口可简化复杂的任务,实现快速部署和迭代。

有关申请和福利的更多信息,请查阅Ultralytics YOLOv8 文档

如何将 VisionEye 与Comet 或ClearML 等其他机器学习工具集成?

Ultralytics YOLOv8 可以与Comet 和ClearML 等各种机器学习工具无缝集成,增强了实验跟踪、协作和可重复性。请按照有关如何使用YOLOv5 与Comet以及将YOLOv8 与ClearML 集成的详细指南开始操作。

如需进一步了解和了解集成示例,请查阅我们的Ultralytics 集成指南


📅创建于 9 个月前 ✏️已更新 13 天前

评论