Skip to content

Reference for ultralytics/data/augment.py

Note

This file is available at https://github.com/ultralytics/ultralytics/blob/main/ultralytics/data/augment.py. If you spot a problem please help fix it by contributing a Pull Request 🛠️. Thank you 🙏!


ultralytics.data.augment.BaseTransform

BaseTransform()

Base class for image transformations in the Ultralytics library.

This class serves as a foundation for implementing various image processing operations, designed to be compatible with both classification and semantic segmentation tasks.

Methods:

Name Description
apply_image

Applies image transformations to labels.

apply_instances

Applies transformations to object instances in labels.

apply_semantic

Applies semantic segmentation to an image.

__call__

Applies all label transformations to an image, instances, and semantic masks.

Examples:

>>> transform = BaseTransform()
>>> labels = {"image": np.array(...), "instances": [...], "semantic": np.array(...)}
>>> transformed_labels = transform(labels)

This constructor sets up the base transformation object, which can be extended for specific image processing tasks. It is designed to be compatible with both classification and semantic segmentation.

Examples:

>>> transform = BaseTransform()
Source code in ultralytics/data/augment.py
def __init__(self) -> None:
    """
    Initializes the BaseTransform object.

    This constructor sets up the base transformation object, which can be extended for specific image
    processing tasks. It is designed to be compatible with both classification and semantic segmentation.

    Examples:
        >>> transform = BaseTransform()
    """
    pass

__call__

__call__(labels)

Applies all label transformations to an image, instances, and semantic masks.

This method orchestrates the application of various transformations defined in the BaseTransform class to the input labels. It sequentially calls the apply_image and apply_instances methods to process the image and object instances, respectively.

Parameters:

Name Type Description Default
labels Dict

A dictionary containing image data and annotations. Expected keys include 'img' for the image data, and 'instances' for object instances.

required

Returns:

Type Description
Dict

The input labels dictionary with transformed image and instances.

Examples:

>>> transform = BaseTransform()
>>> labels = {"img": np.random.rand(640, 640, 3), "instances": []}
>>> transformed_labels = transform(labels)
Source code in ultralytics/data/augment.py
def __call__(self, labels):
    """
    Applies all label transformations to an image, instances, and semantic masks.

    This method orchestrates the application of various transformations defined in the BaseTransform class
    to the input labels. It sequentially calls the apply_image and apply_instances methods to process the
    image and object instances, respectively.

    Args:
        labels (Dict): A dictionary containing image data and annotations. Expected keys include 'img' for
            the image data, and 'instances' for object instances.

    Returns:
        (Dict): The input labels dictionary with transformed image and instances.

    Examples:
        >>> transform = BaseTransform()
        >>> labels = {"img": np.random.rand(640, 640, 3), "instances": []}
        >>> transformed_labels = transform(labels)
    """
    self.apply_image(labels)
    self.apply_instances(labels)
    self.apply_semantic(labels)

apply_image

apply_image(labels)

Applies image transformations to labels.

This method is intended to be overridden by subclasses to implement specific image transformation logic. In its base form, it returns the input labels unchanged.

Parameters:

Name Type Description Default
labels Any

The input labels to be transformed. The exact type and structure of labels may vary depending on the specific implementation.

required

Returns:

Type Description
Any

The transformed labels. In the base implementation, this is identical to the input.

Examples:

>>> transform = BaseTransform()
>>> original_labels = [1, 2, 3]
>>> transformed_labels = transform.apply_image(original_labels)
>>> print(transformed_labels)
[1, 2, 3]
Source code in ultralytics/data/augment.py
def apply_image(self, labels):
    """
    Applies image transformations to labels.

    This method is intended to be overridden by subclasses to implement specific image transformation
    logic. In its base form, it returns the input labels unchanged.

    Args:
        labels (Any): The input labels to be transformed. The exact type and structure of labels may
            vary depending on the specific implementation.

    Returns:
        (Any): The transformed labels. In the base implementation, this is identical to the input.

    Examples:
        >>> transform = BaseTransform()
        >>> original_labels = [1, 2, 3]
        >>> transformed_labels = transform.apply_image(original_labels)
        >>> print(transformed_labels)
        [1, 2, 3]
    """
    pass

apply_instances

apply_instances(labels)

Applies transformations to object instances in labels.

This method is responsible for applying various transformations to object instances within the given labels. It is designed to be overridden by subclasses to implement specific instance transformation logic.

Parameters:

Name Type Description Default
labels Dict

A dictionary containing label information, including object instances.

required

Returns:

Type Description
Dict

The modified labels dictionary with transformed object instances.

Examples:

>>> transform = BaseTransform()
>>> labels = {"instances": Instances(xyxy=torch.rand(5, 4), cls=torch.randint(0, 80, (5,)))}
>>> transformed_labels = transform.apply_instances(labels)
Source code in ultralytics/data/augment.py
def apply_instances(self, labels):
    """
    Applies transformations to object instances in labels.

    This method is responsible for applying various transformations to object instances within the given
    labels. It is designed to be overridden by subclasses to implement specific instance transformation
    logic.

    Args:
        labels (Dict): A dictionary containing label information, including object instances.

    Returns:
        (Dict): The modified labels dictionary with transformed object instances.

    Examples:
        >>> transform = BaseTransform()
        >>> labels = {"instances": Instances(xyxy=torch.rand(5, 4), cls=torch.randint(0, 80, (5,)))}
        >>> transformed_labels = transform.apply_instances(labels)
    """
    pass

apply_semantic

apply_semantic(labels)

Applies semantic segmentation transformations to an image.

This method is intended to be overridden by subclasses to implement specific semantic segmentation transformations. In its base form, it does not perform any operations.

Parameters:

Name Type Description Default
labels Any

The input labels or semantic segmentation mask to be transformed.

required

Returns:

Type Description
Any

The transformed semantic segmentation mask or labels.

Examples:

>>> transform = BaseTransform()
>>> semantic_mask = np.zeros((100, 100), dtype=np.uint8)
>>> transformed_mask = transform.apply_semantic(semantic_mask)
Source code in ultralytics/data/augment.py
def apply_semantic(self, labels):
    """
    Applies semantic segmentation transformations to an image.

    This method is intended to be overridden by subclasses to implement specific semantic segmentation
    transformations. In its base form, it does not perform any operations.

    Args:
        labels (Any): The input labels or semantic segmentation mask to be transformed.

    Returns:
        (Any): The transformed semantic segmentation mask or labels.

    Examples:
        >>> transform = BaseTransform()
        >>> semantic_mask = np.zeros((100, 100), dtype=np.uint8)
        >>> transformed_mask = transform.apply_semantic(semantic_mask)
    """
    pass





ultralytics.data.augment.Compose

Compose(transforms)

A class for composing multiple image transformations.

Attributes:

Name Type Description
transforms List[Callable]

A list of transformation functions to be applied sequentially.

Methods:

Name Description
__call__

Applies a series of transformations to input data.

append

Appends a new transform to the existing list of transforms.

insert

Inserts a new transform at a specified index in the list of transforms.

__getitem__

Retrieves a specific transform or a set of transforms using indexing.

__setitem__

Sets a specific transform or a set of transforms using indexing.

tolist

Converts the list of transforms to a standard Python list.

Examples:

>>> transforms = [RandomFlip(), RandomPerspective(30)]
>>> compose = Compose(transforms)
>>> transformed_data = compose(data)
>>> compose.append(CenterCrop((224, 224)))
>>> compose.insert(0, RandomFlip())

Parameters:

Name Type Description Default
transforms List[Callable]

A list of callable transform objects to be applied sequentially.

required

Examples:

>>> from ultralytics.data.augment import Compose, RandomHSV, RandomFlip
>>> transforms = [RandomHSV(), RandomFlip()]
>>> compose = Compose(transforms)
Source code in ultralytics/data/augment.py
def __init__(self, transforms):
    """
    Initializes the Compose object with a list of transforms.

    Args:
        transforms (List[Callable]): A list of callable transform objects to be applied sequentially.

    Examples:
        >>> from ultralytics.data.augment import Compose, RandomHSV, RandomFlip
        >>> transforms = [RandomHSV(), RandomFlip()]
        >>> compose = Compose(transforms)
    """
    self.transforms = transforms if isinstance(transforms, list) else [transforms]

__call__

__call__(data)

Applies a series of transformations to input data. This method sequentially applies each transformation in the Compose object's list of transforms to the input data.

Parameters:

Name Type Description Default
data Any

The input data to be transformed. This can be of any type, depending on the transformations in the list.

required

Returns:

Type Description
Any

The transformed data after applying all transformations in sequence.

Examples:

>>> transforms = [Transform1(), Transform2(), Transform3()]
>>> compose = Compose(transforms)
>>> transformed_data = compose(input_data)
Source code in ultralytics/data/augment.py
def __call__(self, data):
    """
    Applies a series of transformations to input data. This method sequentially applies each transformation in the
    Compose object's list of transforms to the input data.

    Args:
        data (Any): The input data to be transformed. This can be of any type, depending on the
            transformations in the list.

    Returns:
        (Any): The transformed data after applying all transformations in sequence.

    Examples:
        >>> transforms = [Transform1(), Transform2(), Transform3()]
        >>> compose = Compose(transforms)
        >>> transformed_data = compose(input_data)
    """
    for t in self.transforms:
        data = t(data)
    return data

__getitem__

__getitem__(index: Union[list, int]) -> Compose

Retrieves a specific transform or a set of transforms using indexing.

Parameters:

Name Type Description Default
index int | List[int]

Index or list of indices of the transforms to retrieve.

required

Returns:

Type Description
Compose

A new Compose object containing the selected transform(s).

Raises:

Type Description
AssertionError

If the index is not of type int or list.

Examples:

>>> transforms = [RandomFlip(), RandomPerspective(10), RandomHSV(0.5, 0.5, 0.5)]
>>> compose = Compose(transforms)
>>> single_transform = compose[1]  # Returns a Compose object with only RandomPerspective
>>> multiple_transforms = compose[0:2]  # Returns a Compose object with RandomFlip and RandomPerspective
Source code in ultralytics/data/augment.py
def __getitem__(self, index: Union[list, int]) -> "Compose":
    """
    Retrieves a specific transform or a set of transforms using indexing.

    Args:
        index (int | List[int]): Index or list of indices of the transforms to retrieve.

    Returns:
        (Compose): A new Compose object containing the selected transform(s).

    Raises:
        AssertionError: If the index is not of type int or list.

    Examples:
        >>> transforms = [RandomFlip(), RandomPerspective(10), RandomHSV(0.5, 0.5, 0.5)]
        >>> compose = Compose(transforms)
        >>> single_transform = compose[1]  # Returns a Compose object with only RandomPerspective
        >>> multiple_transforms = compose[0:2]  # Returns a Compose object with RandomFlip and RandomPerspective
    """
    assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}"
    index = [index] if isinstance(index, int) else index
    return Compose([self.transforms[i] for i in index])

__repr__

__repr__()

Returns a string representation of the Compose object.

Returns:

Type Description
str

A string representation of the Compose object, including the list of transforms.

Examples:

>>> transforms = [RandomFlip(), RandomPerspective(degrees=10, translate=0.1, scale=0.1)]
>>> compose = Compose(transforms)
>>> print(compose)
Compose([
    RandomFlip(),
    RandomPerspective(degrees=10, translate=0.1, scale=0.1)
])
Source code in ultralytics/data/augment.py
def __repr__(self):
    """
    Returns a string representation of the Compose object.

    Returns:
        (str): A string representation of the Compose object, including the list of transforms.

    Examples:
        >>> transforms = [RandomFlip(), RandomPerspective(degrees=10, translate=0.1, scale=0.1)]
        >>> compose = Compose(transforms)
        >>> print(compose)
        Compose([
            RandomFlip(),
            RandomPerspective(degrees=10, translate=0.1, scale=0.1)
        ])
    """
    return f"{self.__class__.__name__}({', '.join([f'{t}' for t in self.transforms])})"

__setitem__

__setitem__(index: Union[list, int], value: Union[list, int]) -> None

Sets one or more transforms in the composition using indexing.

Parameters:

Name Type Description Default
index int | List[int]

Index or list of indices to set transforms at.

required
value Any | List[Any]

Transform or list of transforms to set at the specified index(es).

required

Raises:

Type Description
AssertionError

If index type is invalid, value type doesn't match index type, or index is out of range.

Examples:

>>> compose = Compose([Transform1(), Transform2(), Transform3()])
>>> compose[1] = NewTransform()  # Replace second transform
>>> compose[0:2] = [NewTransform1(), NewTransform2()]  # Replace first two transforms
Source code in ultralytics/data/augment.py
def __setitem__(self, index: Union[list, int], value: Union[list, int]) -> None:
    """
    Sets one or more transforms in the composition using indexing.

    Args:
        index (int | List[int]): Index or list of indices to set transforms at.
        value (Any | List[Any]): Transform or list of transforms to set at the specified index(es).

    Raises:
        AssertionError: If index type is invalid, value type doesn't match index type, or index is out of range.

    Examples:
        >>> compose = Compose([Transform1(), Transform2(), Transform3()])
        >>> compose[1] = NewTransform()  # Replace second transform
        >>> compose[0:2] = [NewTransform1(), NewTransform2()]  # Replace first two transforms
    """
    assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}"
    if isinstance(index, list):
        assert isinstance(
            value, list
        ), f"The indices should be the same type as values, but got {type(index)} and {type(value)}"
    if isinstance(index, int):
        index, value = [index], [value]
    for i, v in zip(index, value):
        assert i < len(self.transforms), f"list index {i} out of range {len(self.transforms)}."
        self.transforms[i] = v

append

append(transform)

Appends a new transform to the existing list of transforms.

Parameters:

Name Type Description Default
transform BaseTransform

The transformation to be added to the composition.

required

Examples:

>>> compose = Compose([RandomFlip(), RandomPerspective()])
>>> compose.append(RandomHSV())
Source code in ultralytics/data/augment.py
def append(self, transform):
    """
    Appends a new transform to the existing list of transforms.

    Args:
        transform (BaseTransform): The transformation to be added to the composition.

    Examples:
        >>> compose = Compose([RandomFlip(), RandomPerspective()])
        >>> compose.append(RandomHSV())
    """
    self.transforms.append(transform)

insert

insert(index, transform)

Inserts a new transform at a specified index in the existing list of transforms.

Parameters:

Name Type Description Default
index int

The index at which to insert the new transform.

required
transform BaseTransform

The transform object to be inserted.

required

Examples:

>>> compose = Compose([Transform1(), Transform2()])
>>> compose.insert(1, Transform3())
>>> len(compose.transforms)
3
Source code in ultralytics/data/augment.py
def insert(self, index, transform):
    """
    Inserts a new transform at a specified index in the existing list of transforms.

    Args:
        index (int): The index at which to insert the new transform.
        transform (BaseTransform): The transform object to be inserted.

    Examples:
        >>> compose = Compose([Transform1(), Transform2()])
        >>> compose.insert(1, Transform3())
        >>> len(compose.transforms)
        3
    """
    self.transforms.insert(index, transform)

tolist

tolist()

Converts the list of transforms to a standard Python list.

Returns:

Type Description
List

A list containing all the transform objects in the Compose instance.

Examples:

>>> transforms = [RandomFlip(), RandomPerspective(10), CenterCrop()]
>>> compose = Compose(transforms)
>>> transform_list = compose.tolist()
>>> print(len(transform_list))
3
Source code in ultralytics/data/augment.py
def tolist(self):
    """
    Converts the list of transforms to a standard Python list.

    Returns:
        (List): A list containing all the transform objects in the Compose instance.

    Examples:
        >>> transforms = [RandomFlip(), RandomPerspective(10), CenterCrop()]
        >>> compose = Compose(transforms)
        >>> transform_list = compose.tolist()
        >>> print(len(transform_list))
        3
    """
    return self.transforms





ultralytics.data.augment.BaseMixTransform

BaseMixTransform(dataset, pre_transform=None, p=0.0)

Base class for mix transformations like MixUp and Mosaic.

This class provides a foundation for implementing mix transformations on datasets. It handles the probability-based application of transforms and manages the mixing of multiple images and labels.

Attributes:

Name Type Description
dataset Any

The dataset object containing images and labels.

pre_transform Callable | None

Optional transform to apply before mixing.

p float

Probability of applying the mix transformation.

Methods:

Name Description
__call__

Applies the mix transformation to the input labels.

_mix_transform

Abstract method to be implemented by subclasses for specific mix operations.

get_indexes

Abstract method to get indexes of images to be mixed.

_update_label_text

Updates label text for mixed images.

Examples:

>>> class CustomMixTransform(BaseMixTransform):
...     def _mix_transform(self, labels):
...         # Implement custom mix logic here
...         return labels
...
...     def get_indexes(self):
...         return [random.randint(0, len(self.dataset) - 1) for _ in range(3)]
>>> dataset = YourDataset()
>>> transform = CustomMixTransform(dataset, p=0.5)
>>> mixed_labels = transform(original_labels)

This class serves as a base for implementing mix transformations in image processing pipelines.

Parameters:

Name Type Description Default
dataset Any

The dataset object containing images and labels for mixing.

required
pre_transform Callable | None

Optional transform to apply before mixing.

None
p float

Probability of applying the mix transformation. Should be in the range [0.0, 1.0].

0.0

Examples:

>>> dataset = YOLODataset("path/to/data")
>>> pre_transform = Compose([RandomFlip(), RandomPerspective()])
>>> mix_transform = BaseMixTransform(dataset, pre_transform, p=0.5)
Source code in ultralytics/data/augment.py
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
    """
    Initializes the BaseMixTransform object for mix transformations like MixUp and Mosaic.

    This class serves as a base for implementing mix transformations in image processing pipelines.

    Args:
        dataset (Any): The dataset object containing images and labels for mixing.
        pre_transform (Callable | None): Optional transform to apply before mixing.
        p (float): Probability of applying the mix transformation. Should be in the range [0.0, 1.0].

    Examples:
        >>> dataset = YOLODataset("path/to/data")
        >>> pre_transform = Compose([RandomFlip(), RandomPerspective()])
        >>> mix_transform = BaseMixTransform(dataset, pre_transform, p=0.5)
    """
    self.dataset = dataset
    self.pre_transform = pre_transform
    self.p = p

__call__

__call__(labels)

Applies pre-processing transforms and mixup/mosaic transforms to labels data.

This method determines whether to apply the mix transform based on a probability factor. If applied, it selects additional images, applies pre-transforms if specified, and then performs the mix transform.

Parameters:

Name Type Description Default
labels Dict

A dictionary containing label data for an image.

required

Returns:

Type Description
Dict

The transformed labels dictionary, which may include mixed data from other images.

Examples:

>>> transform = BaseMixTransform(dataset, pre_transform=None, p=0.5)
>>> result = transform({"image": img, "bboxes": boxes, "cls": classes})
Source code in ultralytics/data/augment.py
def __call__(self, labels):
    """
    Applies pre-processing transforms and mixup/mosaic transforms to labels data.

    This method determines whether to apply the mix transform based on a probability factor. If applied, it
    selects additional images, applies pre-transforms if specified, and then performs the mix transform.

    Args:
        labels (Dict): A dictionary containing label data for an image.

    Returns:
        (Dict): The transformed labels dictionary, which may include mixed data from other images.

    Examples:
        >>> transform = BaseMixTransform(dataset, pre_transform=None, p=0.5)
        >>> result = transform({"image": img, "bboxes": boxes, "cls": classes})
    """
    if random.uniform(0, 1) > self.p:
        return labels

    # Get index of one or three other images
    indexes = self.get_indexes()
    if isinstance(indexes, int):
        indexes = [indexes]

    # Get images information will be used for Mosaic or MixUp
    mix_labels = [self.dataset.get_image_and_label(i) for i in indexes]

    if self.pre_transform is not None:
        for i, data in enumerate(mix_labels):
            mix_labels[i] = self.pre_transform(data)
    labels["mix_labels"] = mix_labels

    # Update cls and texts
    labels = self._update_label_text(labels)
    # Mosaic or MixUp
    labels = self._mix_transform(labels)
    labels.pop("mix_labels", None)
    return labels

get_indexes

get_indexes()

Gets a list of shuffled indexes for mosaic augmentation.

Returns:

Type Description
List[int]

A list of shuffled indexes from the dataset.

Examples:

>>> transform = BaseMixTransform(dataset)
>>> indexes = transform.get_indexes()
>>> print(indexes)  # [3, 18, 7, 2]
Source code in ultralytics/data/augment.py
def get_indexes(self):
    """
    Gets a list of shuffled indexes for mosaic augmentation.

    Returns:
        (List[int]): A list of shuffled indexes from the dataset.

    Examples:
        >>> transform = BaseMixTransform(dataset)
        >>> indexes = transform.get_indexes()
        >>> print(indexes)  # [3, 18, 7, 2]
    """
    raise NotImplementedError





ultralytics.data.augment.Mosaic

Mosaic(dataset, imgsz=640, p=1.0, n=4)

Bases: BaseMixTransform

Mosaic augmentation for image datasets.

This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. The augmentation is applied to a dataset with a given probability.

Attributes:

Name Type Description
dataset

The dataset on which the mosaic augmentation is applied.

imgsz int

Image size (height and width) after mosaic pipeline of a single image.

p float

Probability of applying the mosaic augmentation. Must be in the range 0-1.

n int

The grid size, either 4 (for 2x2) or 9 (for 3x3).

border Tuple[int, int]

Border size for width and height.

Methods:

Name Description
get_indexes

Returns a list of random indexes from the dataset.

_mix_transform

Applies mixup transformation to the input image and labels.

_mosaic3

Creates a 1x3 image mosaic.

_mosaic4

Creates a 2x2 image mosaic.

_mosaic9

Creates a 3x3 image mosaic.

_update_labels

Updates labels with padding.

_cat_labels

Concatenates labels and clips mosaic border instances.

Examples:

>>> from ultralytics.data.augment import Mosaic
>>> dataset = YourDataset(...)  # Your image dataset
>>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
>>> augmented_labels = mosaic_aug(original_labels)

This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. The augmentation is applied to a dataset with a given probability.

Parameters:

Name Type Description Default
dataset Any

The dataset on which the mosaic augmentation is applied.

required
imgsz int

Image size (height and width) after mosaic pipeline of a single image.

640
p float

Probability of applying the mosaic augmentation. Must be in the range 0-1.

1.0
n int

The grid size, either 4 (for 2x2) or 9 (for 3x3).

4

Examples:

>>> from ultralytics.data.augment import Mosaic
>>> dataset = YourDataset(...)
>>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
Source code in ultralytics/data/augment.py
def __init__(self, dataset, imgsz=640, p=1.0, n=4):
    """
    Initializes the Mosaic augmentation object.

    This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image.
    The augmentation is applied to a dataset with a given probability.

    Args:
        dataset (Any): The dataset on which the mosaic augmentation is applied.
        imgsz (int): Image size (height and width) after mosaic pipeline of a single image.
        p (float): Probability of applying the mosaic augmentation. Must be in the range 0-1.
        n (int): The grid size, either 4 (for 2x2) or 9 (for 3x3).

    Examples:
        >>> from ultralytics.data.augment import Mosaic
        >>> dataset = YourDataset(...)
        >>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
    """
    assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."
    assert n in {4, 9}, "grid must be equal to 4 or 9."
    super().__init__(dataset=dataset, p=p)
    self.imgsz = imgsz
    self.border = (-imgsz // 2, -imgsz // 2)  # width, height
    self.n = n

get_indexes

get_indexes(buffer=True)

Returns a list of random indexes from the dataset for mosaic augmentation.

This method selects random image indexes either from a buffer or from the entire dataset, depending on the 'buffer' parameter. It is used to choose images for creating mosaic augmentations.

Parameters:

Name Type Description Default
buffer bool

If True, selects images from the dataset buffer. If False, selects from the entire dataset.

True

Returns:

Type Description
List[int]

A list of random image indexes. The length of the list is n-1, where n is the number of images used in the mosaic (either 3 or 8, depending on whether n is 4 or 9).

Examples:

>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)
>>> indexes = mosaic.get_indexes()
>>> print(len(indexes))  # Output: 3
Source code in ultralytics/data/augment.py
def get_indexes(self, buffer=True):
    """
    Returns a list of random indexes from the dataset for mosaic augmentation.

    This method selects random image indexes either from a buffer or from the entire dataset, depending on
    the 'buffer' parameter. It is used to choose images for creating mosaic augmentations.

    Args:
        buffer (bool): If True, selects images from the dataset buffer. If False, selects from the entire
            dataset.

    Returns:
        (List[int]): A list of random image indexes. The length of the list is n-1, where n is the number
            of images used in the mosaic (either 3 or 8, depending on whether n is 4 or 9).

    Examples:
        >>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)
        >>> indexes = mosaic.get_indexes()
        >>> print(len(indexes))  # Output: 3
    """
    if buffer:  # select images from buffer
        return random.choices(list(self.dataset.buffer), k=self.n - 1)
    else:  # select any images
        return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)]





ultralytics.data.augment.MixUp

MixUp(dataset, pre_transform=None, p=0.0)

Bases: BaseMixTransform

Applies MixUp augmentation to image datasets.

This class implements the MixUp augmentation technique as described in the paper "mixup: Beyond Empirical Risk Minimization" (https://arxiv.org/abs/1710.09412). MixUp combines two images and their labels using a random weight.

Attributes:

Name Type Description
dataset Any

The dataset to which MixUp augmentation will be applied.

pre_transform Callable | None

Optional transform to apply before MixUp.

p float

Probability of applying MixUp augmentation.

Methods:

Name Description
get_indexes

Returns a random index from the dataset.

_mix_transform

Applies MixUp augmentation to the input labels.

Examples:

>>> from ultralytics.data.augment import MixUp
>>> dataset = YourDataset(...)  # Your image dataset
>>> mixup = MixUp(dataset, p=0.5)
>>> augmented_labels = mixup(original_labels)

MixUp is an image augmentation technique that combines two images by taking a weighted sum of their pixel values and labels. This implementation is designed for use with the Ultralytics YOLO framework.

Parameters:

Name Type Description Default
dataset Any

The dataset to which MixUp augmentation will be applied.

required
pre_transform Callable | None

Optional transform to apply to images before MixUp.

None
p float

Probability of applying MixUp augmentation to an image. Must be in the range [0, 1].

0.0

Examples:

>>> from ultralytics.data.dataset import YOLODataset
>>> dataset = YOLODataset("path/to/data.yaml")
>>> mixup = MixUp(dataset, pre_transform=None, p=0.5)
Source code in ultralytics/data/augment.py
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
    """
    Initializes the MixUp augmentation object.

    MixUp is an image augmentation technique that combines two images by taking a weighted sum of their pixel
    values and labels. This implementation is designed for use with the Ultralytics YOLO framework.

    Args:
        dataset (Any): The dataset to which MixUp augmentation will be applied.
        pre_transform (Callable | None): Optional transform to apply to images before MixUp.
        p (float): Probability of applying MixUp augmentation to an image. Must be in the range [0, 1].

    Examples:
        >>> from ultralytics.data.dataset import YOLODataset
        >>> dataset = YOLODataset("path/to/data.yaml")
        >>> mixup = MixUp(dataset, pre_transform=None, p=0.5)
    """
    super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)

get_indexes

get_indexes()

Get a random index from the dataset.

This method returns a single random index from the dataset, which is used to select an image for MixUp augmentation.

Returns:

Type Description
int

A random integer index within the range of the dataset length.

Examples:

>>> mixup = MixUp(dataset)
>>> index = mixup.get_indexes()
>>> print(index)
42
Source code in ultralytics/data/augment.py
def get_indexes(self):
    """
    Get a random index from the dataset.

    This method returns a single random index from the dataset, which is used to select an image for MixUp
    augmentation.

    Returns:
        (int): A random integer index within the range of the dataset length.

    Examples:
        >>> mixup = MixUp(dataset)
        >>> index = mixup.get_indexes()
        >>> print(index)
        42
    """
    return random.randint(0, len(self.dataset) - 1)





ultralytics.data.augment.RandomPerspective

RandomPerspective(
    degrees=0.0,
    translate=0.1,
    scale=0.5,
    shear=0.0,
    perspective=0.0,
    border=(0, 0),
    pre_transform=None,
)

Implements random perspective and affine transformations on images and corresponding annotations.

This class applies random rotations, translations, scaling, shearing, and perspective transformations to images and their associated bounding boxes, segments, and keypoints. It can be used as part of an augmentation pipeline for object detection and instance segmentation tasks.

Attributes:

Name Type Description
degrees float

Maximum absolute degree range for random rotations.

translate float

Maximum translation as a fraction of the image size.

scale float

Scaling factor range, e.g., scale=0.1 means 0.9-1.1.

shear float

Maximum shear angle in degrees.

perspective float

Perspective distortion factor.

border Tuple[int, int]

Mosaic border size as (x, y).

pre_transform Callable | None

Optional transform to apply before the random perspective.

Methods:

Name Description
affine_transform

Applies affine transformations to the input image.

apply_bboxes

Transforms bounding boxes using the affine matrix.

apply_segments

Transforms segments and generates new bounding boxes.

apply_keypoints

Transforms keypoints using the affine matrix.

__call__

Applies the random perspective transformation to images and annotations.

box_candidates

Filters transformed bounding boxes based on size and aspect ratio.

Examples:

>>> transform = RandomPerspective(degrees=10, translate=0.1, scale=0.1, shear=10)
>>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> labels = {"img": image, "cls": np.array([0, 1]), "instances": Instances(...)}
>>> result = transform(labels)
>>> transformed_image = result["img"]
>>> transformed_instances = result["instances"]

This class implements random perspective and affine transformations on images and corresponding bounding boxes, segments, and keypoints. Transformations include rotation, translation, scaling, and shearing.

Parameters:

Name Type Description Default
degrees float

Degree range for random rotations.

0.0
translate float

Fraction of total width and height for random translation.

0.1
scale float

Scaling factor interval, e.g., a scale factor of 0.5 allows a resize between 50%-150%.

0.5
shear float

Shear intensity (angle in degrees).

0.0
perspective float

Perspective distortion factor.

0.0
border Tuple[int, int]

Tuple specifying mosaic border (top/bottom, left/right).

(0, 0)
pre_transform Callable | None

Function/transform to apply to the image before starting the random transformation.

None

Examples:

>>> transform = RandomPerspective(degrees=10.0, translate=0.1, scale=0.5, shear=5.0)
>>> result = transform(labels)  # Apply random perspective to labels
Source code in ultralytics/data/augment.py
def __init__(
    self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0), pre_transform=None
):
    """
    Initializes RandomPerspective object with transformation parameters.

    This class implements random perspective and affine transformations on images and corresponding bounding boxes,
    segments, and keypoints. Transformations include rotation, translation, scaling, and shearing.

    Args:
        degrees (float): Degree range for random rotations.
        translate (float): Fraction of total width and height for random translation.
        scale (float): Scaling factor interval, e.g., a scale factor of 0.5 allows a resize between 50%-150%.
        shear (float): Shear intensity (angle in degrees).
        perspective (float): Perspective distortion factor.
        border (Tuple[int, int]): Tuple specifying mosaic border (top/bottom, left/right).
        pre_transform (Callable | None): Function/transform to apply to the image before starting the random
            transformation.

    Examples:
        >>> transform = RandomPerspective(degrees=10.0, translate=0.1, scale=0.5, shear=5.0)
        >>> result = transform(labels)  # Apply random perspective to labels
    """
    self.degrees = degrees
    self.translate = translate
    self.scale = scale
    self.shear = shear
    self.perspective = perspective
    self.border = border  # mosaic border
    self.pre_transform = pre_transform

__call__

__call__(labels)

Applies random perspective and affine transformations to an image and its associated labels.

This method performs a series of transformations including rotation, translation, scaling, shearing, and perspective distortion on the input image and adjusts the corresponding bounding boxes, segments, and keypoints accordingly.

Parameters:

Name Type Description Default
labels Dict

A dictionary containing image data and annotations. Must include: 'img' (ndarray): The input image. 'cls' (ndarray): Class labels. 'instances' (Instances): Object instances with bounding boxes, segments, and keypoints. May include: 'mosaic_border' (Tuple[int, int]): Border size for mosaic augmentation.

required

Returns:

Type Description
Dict

Transformed labels dictionary containing: - 'img' (np.ndarray): The transformed image. - 'cls' (np.ndarray): Updated class labels. - 'instances' (Instances): Updated object instances. - 'resized_shape' (Tuple[int, int]): New image shape after transformation.

Examples:

>>> transform = RandomPerspective()
>>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> labels = {
...     "img": image,
...     "cls": np.array([0, 1, 2]),
...     "instances": Instances(bboxes=np.array([[10, 10, 50, 50], [100, 100, 150, 150]])),
... }
>>> result = transform(labels)
>>> assert result["img"].shape[:2] == result["resized_shape"]
Source code in ultralytics/data/augment.py
def __call__(self, labels):
    """
    Applies random perspective and affine transformations to an image and its associated labels.

    This method performs a series of transformations including rotation, translation, scaling, shearing,
    and perspective distortion on the input image and adjusts the corresponding bounding boxes, segments,
    and keypoints accordingly.

    Args:
        labels (Dict): A dictionary containing image data and annotations.
            Must include:
                'img' (ndarray): The input image.
                'cls' (ndarray): Class labels.
                'instances' (Instances): Object instances with bounding boxes, segments, and keypoints.
            May include:
                'mosaic_border' (Tuple[int, int]): Border size for mosaic augmentation.

    Returns:
        (Dict): Transformed labels dictionary containing:
            - 'img' (np.ndarray): The transformed image.
            - 'cls' (np.ndarray): Updated class labels.
            - 'instances' (Instances): Updated object instances.
            - 'resized_shape' (Tuple[int, int]): New image shape after transformation.

    Examples:
        >>> transform = RandomPerspective()
        >>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
        >>> labels = {
        ...     "img": image,
        ...     "cls": np.array([0, 1, 2]),
        ...     "instances": Instances(bboxes=np.array([[10, 10, 50, 50], [100, 100, 150, 150]])),
        ... }
        >>> result = transform(labels)
        >>> assert result["img"].shape[:2] == result["resized_shape"]
    """
    if self.pre_transform and "mosaic_border" not in labels:
        labels = self.pre_transform(labels)
    labels.pop("ratio_pad", None)  # do not need ratio pad

    img = labels["img"]
    cls = labels["cls"]
    instances = labels.pop("instances")
    # Make sure the coord formats are right
    instances.convert_bbox(format="xyxy")
    instances.denormalize(*img.shape[:2][::-1])

    border = labels.pop("mosaic_border", self.border)
    self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2  # w, h
    # M is affine matrix
    # Scale for func:`box_candidates`
    img, M, scale = self.affine_transform(img, border)

    bboxes = self.apply_bboxes(instances.bboxes, M)

    segments = instances.segments
    keypoints = instances.keypoints
    # Update bboxes if there are segments.
    if len(segments):
        bboxes, segments = self.apply_segments(segments, M)

    if keypoints is not None:
        keypoints = self.apply_keypoints(keypoints, M)
    new_instances = Instances(bboxes, segments, keypoints, bbox_format="xyxy", normalized=False)
    # Clip
    new_instances.clip(*self.size)

    # Filter instances
    instances.scale(scale_w=scale, scale_h=scale, bbox_only=True)
    # Make the bboxes have the same scale with new_bboxes
    i = self.box_candidates(
        box1=instances.bboxes.T, box2=new_instances.bboxes.T, area_thr=0.01 if len(segments) else 0.10
    )
    labels["instances"] = new_instances[i]
    labels["cls"] = cls[i]
    labels["img"] = img
    labels["resized_shape"] = img.shape[:2]
    return labels

affine_transform

affine_transform(img, border)

Applies a sequence of affine transformations centered around the image center.

This function performs a series of geometric transformations on the input image, including translation, perspective change, rotation, scaling, and shearing. The transformations are applied in a specific order to maintain consistency.

Parameters:

Name Type Description Default
img ndarray

Input image to be transformed.

required
border Tuple[int, int]

Border dimensions for the transformed image.

required

Returns:

Type Description
Tuple[ndarray, ndarray, float]

A tuple containing: - np.ndarray: Transformed image. - np.ndarray: 3x3 transformation matrix. - float: Scale factor applied during the transformation.

Examples:

>>> import numpy as np
>>> img = np.random.rand(100, 100, 3)
>>> border = (10, 10)
>>> transformed_img, matrix, scale = affine_transform(img, border)
Source code in ultralytics/data/augment.py
def affine_transform(self, img, border):
    """
    Applies a sequence of affine transformations centered around the image center.

    This function performs a series of geometric transformations on the input image, including
    translation, perspective change, rotation, scaling, and shearing. The transformations are
    applied in a specific order to maintain consistency.

    Args:
        img (np.ndarray): Input image to be transformed.
        border (Tuple[int, int]): Border dimensions for the transformed image.

    Returns:
        (Tuple[np.ndarray, np.ndarray, float]): A tuple containing:
            - np.ndarray: Transformed image.
            - np.ndarray: 3x3 transformation matrix.
            - float: Scale factor applied during the transformation.

    Examples:
        >>> import numpy as np
        >>> img = np.random.rand(100, 100, 3)
        >>> border = (10, 10)
        >>> transformed_img, matrix, scale = affine_transform(img, border)
    """
    # Center
    C = np.eye(3, dtype=np.float32)

    C[0, 2] = -img.shape[1] / 2  # x translation (pixels)
    C[1, 2] = -img.shape[0] / 2  # y translation (pixels)

    # Perspective
    P = np.eye(3, dtype=np.float32)
    P[2, 0] = random.uniform(-self.perspective, self.perspective)  # x perspective (about y)
    P[2, 1] = random.uniform(-self.perspective, self.perspective)  # y perspective (about x)

    # Rotation and Scale
    R = np.eye(3, dtype=np.float32)
    a = random.uniform(-self.degrees, self.degrees)
    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
    s = random.uniform(1 - self.scale, 1 + self.scale)
    # s = 2 ** random.uniform(-scale, scale)
    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)

    # Shear
    S = np.eye(3, dtype=np.float32)
    S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180)  # x shear (deg)
    S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180)  # y shear (deg)

    # Translation
    T = np.eye(3, dtype=np.float32)
    T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0]  # x translation (pixels)
    T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1]  # y translation (pixels)

    # Combined rotation matrix
    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
    # Affine image
    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
        if self.perspective:
            img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114))
        else:  # affine
            img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114))
    return img, M, s

apply_bboxes

apply_bboxes(bboxes, M)

Apply affine transformation to bounding boxes.

This function applies an affine transformation to a set of bounding boxes using the provided transformation matrix.

Parameters:

Name Type Description Default
bboxes Tensor

Bounding boxes in xyxy format with shape (N, 4), where N is the number of bounding boxes.

required
M Tensor

Affine transformation matrix with shape (3, 3).

required

Returns:

Type Description
Tensor

Transformed bounding boxes in xyxy format with shape (N, 4).

Examples:

>>> bboxes = torch.tensor([[10, 10, 20, 20], [30, 30, 40, 40]])
>>> M = torch.eye(3)
>>> transformed_bboxes = apply_bboxes(bboxes, M)
Source code in ultralytics/data/augment.py
def apply_bboxes(self, bboxes, M):
    """
    Apply affine transformation to bounding boxes.

    This function applies an affine transformation to a set of bounding boxes using the provided
    transformation matrix.

    Args:
        bboxes (torch.Tensor): Bounding boxes in xyxy format with shape (N, 4), where N is the number
            of bounding boxes.
        M (torch.Tensor): Affine transformation matrix with shape (3, 3).

    Returns:
        (torch.Tensor): Transformed bounding boxes in xyxy format with shape (N, 4).

    Examples:
        >>> bboxes = torch.tensor([[10, 10, 20, 20], [30, 30, 40, 40]])
        >>> M = torch.eye(3)
        >>> transformed_bboxes = apply_bboxes(bboxes, M)
    """
    n = len(bboxes)
    if n == 0:
        return bboxes

    xy = np.ones((n * 4, 3), dtype=bboxes.dtype)
    xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
    xy = xy @ M.T  # transform
    xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine

    # Create new boxes
    x = xy[:, [0, 2, 4, 6]]
    y = xy[:, [1, 3, 5, 7]]
    return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T

apply_keypoints

apply_keypoints(keypoints, M)

Applies affine transformation to keypoints.

This method transforms the input keypoints using the provided affine transformation matrix. It handles perspective rescaling if necessary and updates the visibility of keypoints that fall outside the image boundaries after transformation.

Parameters:

Name Type Description Default
keypoints ndarray

Array of keypoints with shape (N, 17, 3), where N is the number of instances, 17 is the number of keypoints per instance, and 3 represents (x, y, visibility).

required
M ndarray

3x3 affine transformation matrix.

required

Returns:

Type Description
ndarray

Transformed keypoints array with the same shape as input (N, 17, 3).

Examples:

>>> random_perspective = RandomPerspective()
>>> keypoints = np.random.rand(5, 17, 3)  # 5 instances, 17 keypoints each
>>> M = np.eye(3)  # Identity transformation
>>> transformed_keypoints = random_perspective.apply_keypoints(keypoints, M)
Source code in ultralytics/data/augment.py
def apply_keypoints(self, keypoints, M):
    """
    Applies affine transformation to keypoints.

    This method transforms the input keypoints using the provided affine transformation matrix. It handles
    perspective rescaling if necessary and updates the visibility of keypoints that fall outside the image
    boundaries after transformation.

    Args:
        keypoints (np.ndarray): Array of keypoints with shape (N, 17, 3), where N is the number of instances,
            17 is the number of keypoints per instance, and 3 represents (x, y, visibility).
        M (np.ndarray): 3x3 affine transformation matrix.

    Returns:
        (np.ndarray): Transformed keypoints array with the same shape as input (N, 17, 3).

    Examples:
        >>> random_perspective = RandomPerspective()
        >>> keypoints = np.random.rand(5, 17, 3)  # 5 instances, 17 keypoints each
        >>> M = np.eye(3)  # Identity transformation
        >>> transformed_keypoints = random_perspective.apply_keypoints(keypoints, M)
    """
    n, nkpt = keypoints.shape[:2]
    if n == 0:
        return keypoints
    xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype)
    visible = keypoints[..., 2].reshape(n * nkpt, 1)
    xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2)
    xy = xy @ M.T  # transform
    xy = xy[:, :2] / xy[:, 2:3]  # perspective rescale or affine
    out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1])
    visible[out_mask] = 0
    return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3)

apply_segments

apply_segments(segments, M)

Apply affine transformations to segments and generate new bounding boxes.

This function applies affine transformations to input segments and generates new bounding boxes based on the transformed segments. It clips the transformed segments to fit within the new bounding boxes.

Parameters:

Name Type Description Default
segments ndarray

Input segments with shape (N, M, 2), where N is the number of segments and M is the number of points in each segment.

required
M ndarray

Affine transformation matrix with shape (3, 3).

required

Returns:

Type Description
Tuple[ndarray, ndarray]

A tuple containing: - New bounding boxes with shape (N, 4) in xyxy format. - Transformed and clipped segments with shape (N, M, 2).

Examples:

>>> segments = np.random.rand(10, 500, 2)  # 10 segments with 500 points each
>>> M = np.eye(3)  # Identity transformation matrix
>>> new_bboxes, new_segments = apply_segments(segments, M)
Source code in ultralytics/data/augment.py
def apply_segments(self, segments, M):
    """
    Apply affine transformations to segments and generate new bounding boxes.

    This function applies affine transformations to input segments and generates new bounding boxes based on
    the transformed segments. It clips the transformed segments to fit within the new bounding boxes.

    Args:
        segments (np.ndarray): Input segments with shape (N, M, 2), where N is the number of segments and M is the
            number of points in each segment.
        M (np.ndarray): Affine transformation matrix with shape (3, 3).

    Returns:
        (Tuple[np.ndarray, np.ndarray]): A tuple containing:
            - New bounding boxes with shape (N, 4) in xyxy format.
            - Transformed and clipped segments with shape (N, M, 2).

    Examples:
        >>> segments = np.random.rand(10, 500, 2)  # 10 segments with 500 points each
        >>> M = np.eye(3)  # Identity transformation matrix
        >>> new_bboxes, new_segments = apply_segments(segments, M)
    """
    n, num = segments.shape[:2]
    if n == 0:
        return [], segments

    xy = np.ones((n * num, 3), dtype=segments.dtype)
    segments = segments.reshape(-1, 2)
    xy[:, :2] = segments
    xy = xy @ M.T  # transform
    xy = xy[:, :2] / xy[:, 2:3]
    segments = xy.reshape(n, -1, 2)
    bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0)
    segments[..., 0] = segments[..., 0].clip(bboxes[:, 0:1], bboxes[:, 2:3])
    segments[..., 1] = segments[..., 1].clip(bboxes[:, 1:2], bboxes[:, 3:4])
    return bboxes, segments

box_candidates

box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16)

Compute candidate boxes for further processing based on size and aspect ratio criteria.

This method compares boxes before and after augmentation to determine if they meet specified thresholds for width, height, aspect ratio, and area. It's used to filter out boxes that have been overly distorted or reduced by the augmentation process.

Parameters:

Name Type Description Default
box1 ndarray

Original boxes before augmentation, shape (4, N) where n is the number of boxes. Format is [x1, y1, x2, y2] in absolute coordinates.

required
box2 ndarray

Augmented boxes after transformation, shape (4, N). Format is [x1, y1, x2, y2] in absolute coordinates.

required
wh_thr float

Width and height threshold in pixels. Boxes smaller than this in either dimension are rejected.

2
ar_thr float

Aspect ratio threshold. Boxes with an aspect ratio greater than this value are rejected.

100
area_thr float

Area ratio threshold. Boxes with an area ratio (new/old) less than this value are rejected.

0.1
eps float

Small epsilon value to prevent division by zero.

1e-16

Returns:

Type Description
ndarray

Boolean array of shape (n,) indicating which boxes are candidates. True values correspond to boxes that meet all criteria.

Examples:

>>> random_perspective = RandomPerspective()
>>> box1 = np.array([[0, 0, 100, 100], [0, 0, 50, 50]]).T
>>> box2 = np.array([[10, 10, 90, 90], [5, 5, 45, 45]]).T
>>> candidates = random_perspective.box_candidates(box1, box2)
>>> print(candidates)
[True True]
Source code in ultralytics/data/augment.py
def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):
    """
    Compute candidate boxes for further processing based on size and aspect ratio criteria.

    This method compares boxes before and after augmentation to determine if they meet specified
    thresholds for width, height, aspect ratio, and area. It's used to filter out boxes that have
    been overly distorted or reduced by the augmentation process.

    Args:
        box1 (numpy.ndarray): Original boxes before augmentation, shape (4, N) where n is the
            number of boxes. Format is [x1, y1, x2, y2] in absolute coordinates.
        box2 (numpy.ndarray): Augmented boxes after transformation, shape (4, N). Format is
            [x1, y1, x2, y2] in absolute coordinates.
        wh_thr (float): Width and height threshold in pixels. Boxes smaller than this in either
            dimension are rejected.
        ar_thr (float): Aspect ratio threshold. Boxes with an aspect ratio greater than this
            value are rejected.
        area_thr (float): Area ratio threshold. Boxes with an area ratio (new/old) less than
            this value are rejected.
        eps (float): Small epsilon value to prevent division by zero.

    Returns:
        (numpy.ndarray): Boolean array of shape (n,) indicating which boxes are candidates.
            True values correspond to boxes that meet all criteria.

    Examples:
        >>> random_perspective = RandomPerspective()
        >>> box1 = np.array([[0, 0, 100, 100], [0, 0, 50, 50]]).T
        >>> box2 = np.array([[10, 10, 90, 90], [5, 5, 45, 45]]).T
        >>> candidates = random_perspective.box_candidates(box1, box2)
        >>> print(candidates)
        [True True]
    """
    w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
    w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
    ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
    return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates





ultralytics.data.augment.RandomHSV

RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)

Randomly adjusts the Hue, Saturation, and Value (HSV) channels of an image.

This class applies random HSV augmentation to images within predefined limits set by hgain, sgain, and vgain.

Attributes:

Name Type Description
hgain float

Maximum variation for hue. Range is typically [0, 1].

sgain float

Maximum variation for saturation. Range is typically [0, 1].

vgain float

Maximum variation for value. Range is typically [0, 1].

Methods:

Name Description
__call__

Applies random HSV augmentation to an image.

Examples:

>>> import numpy as np
>>> from ultralytics.data.augment import RandomHSV
>>> augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
>>> image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
>>> labels = {"img": image}
>>> augmented_labels = augmenter(labels)
>>> augmented_image = augmented_labels["img"]

This class applies random adjustments to the HSV channels of an image within specified limits.

Parameters:

Name Type Description Default
hgain float

Maximum variation for hue. Should be in the range [0, 1].

0.5
sgain float

Maximum variation for saturation. Should be in the range [0, 1].

0.5
vgain float

Maximum variation for value. Should be in the range [0, 1].

0.5

Examples:

>>> hsv_aug = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
>>> augmented_image = hsv_aug(image)
Source code in ultralytics/data/augment.py
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None:
    """
    Initializes the RandomHSV object for random HSV (Hue, Saturation, Value) augmentation.

    This class applies random adjustments to the HSV channels of an image within specified limits.

    Args:
        hgain (float): Maximum variation for hue. Should be in the range [0, 1].
        sgain (float): Maximum variation for saturation. Should be in the range [0, 1].
        vgain (float): Maximum variation for value. Should be in the range [0, 1].

    Examples:
        >>> hsv_aug = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
        >>> augmented_image = hsv_aug(image)
    """
    self.hgain = hgain
    self.sgain = sgain
    self.vgain = vgain

__call__

__call__(labels)

Applies random HSV augmentation to an image within predefined limits.

This method modifies the input image by randomly adjusting its Hue, Saturation, and Value (HSV) channels. The adjustments are made within the limits set by hgain, sgain, and vgain during initialization.

Parameters:

Name Type Description Default
labels Dict

A dictionary containing image data and metadata. Must include an 'img' key with the image as a numpy array.

required

Returns:

Type Description
None

The function modifies the input 'labels' dictionary in-place, updating the 'img' key with the HSV-augmented image.

Examples:

>>> hsv_augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
>>> labels = {"img": np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)}
>>> hsv_augmenter(labels)
>>> augmented_img = labels["img"]
Source code in ultralytics/data/augment.py
def __call__(self, labels):
    """
    Applies random HSV augmentation to an image within predefined limits.

    This method modifies the input image by randomly adjusting its Hue, Saturation, and Value (HSV) channels.
    The adjustments are made within the limits set by hgain, sgain, and vgain during initialization.

    Args:
        labels (Dict): A dictionary containing image data and metadata. Must include an 'img' key with
            the image as a numpy array.

    Returns:
        (None): The function modifies the input 'labels' dictionary in-place, updating the 'img' key
            with the HSV-augmented image.

    Examples:
        >>> hsv_augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
        >>> labels = {"img": np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)}
        >>> hsv_augmenter(labels)
        >>> augmented_img = labels["img"]
    """
    img = labels["img"]
    if self.hgain or self.sgain or self.vgain:
        r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1  # random gains
        hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
        dtype = img.dtype  # uint8

        x = np.arange(0, 256, dtype=r.dtype)
        lut_hue = ((x * r[0]) % 180).astype(dtype)
        lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
        lut_val = np.clip(x * r[2], 0, 255).astype(dtype)

        im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
        cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed
    return labels





ultralytics.data.augment.RandomFlip

RandomFlip(p=0.5, direction='horizontal', flip_idx=None)

Applies a random horizontal or vertical flip to an image with a given probability.

This class performs random image flipping and updates corresponding instance annotations such as bounding boxes and keypoints.

Attributes:

Name Type Description
p float

Probability of applying the flip. Must be between 0 and 1.

direction str

Direction of flip, either 'horizontal' or 'vertical'.

flip_idx array - like

Index mapping for flipping keypoints, if applicable.

Methods:

Name Description
__call__

Applies the random flip transformation to an image and its annotations.

Examples:

>>> transform = RandomFlip(p=0.5, direction="horizontal")
>>> result = transform({"img": image, "instances": instances})
>>> flipped_image = result["img"]
>>> flipped_instances = result["instances"]

This class applies a random horizontal or vertical flip to an image with a given probability. It also updates any instances (bounding boxes, keypoints, etc.) accordingly.

Parameters:

Name Type Description Default
p float

The probability of applying the flip. Must be between 0 and 1.

0.5
direction str

The direction to apply the flip. Must be 'horizontal' or 'vertical'.

'horizontal'
flip_idx List[int] | None

Index mapping for flipping keypoints, if any.

None

Raises:

Type Description
AssertionError

If direction is not 'horizontal' or 'vertical', or if p is not between 0 and 1.

Examples:

>>> flip = RandomFlip(p=0.5, direction="horizontal")
>>> flip = RandomFlip(p=0.7, direction="vertical", flip_idx=[1, 0, 3, 2, 5, 4])
Source code in ultralytics/data/augment.py
def __init__(self, p=0.5, direction="horizontal", flip_idx=None) -> None:
    """
    Initializes the RandomFlip class with probability and direction.

    This class applies a random horizontal or vertical flip to an image with a given probability.
    It also updates any instances (bounding boxes, keypoints, etc.) accordingly.

    Args:
        p (float): The probability of applying the flip. Must be between 0 and 1.
        direction (str): The direction to apply the flip. Must be 'horizontal' or 'vertical'.
        flip_idx (List[int] | None): Index mapping for flipping keypoints, if any.

    Raises:
        AssertionError: If direction is not 'horizontal' or 'vertical', or if p is not between 0 and 1.

    Examples:
        >>> flip = RandomFlip(p=0.5, direction="horizontal")
        >>> flip = RandomFlip(p=0.7, direction="vertical", flip_idx=[1, 0, 3, 2, 5, 4])
    """
    assert direction in {"horizontal", "vertical"}, f"Support direction `horizontal` or `vertical`, got {direction}"
    assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."

    self.p = p
    self.direction = direction
    self.flip_idx = flip_idx

__call__

__call__(labels)

Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly.

This method randomly flips the input image either horizontally or vertically based on the initialized probability and direction. It also updates the corresponding instances (bounding boxes, keypoints) to match the flipped image.

Parameters:

Name Type Description Default
labels Dict

A dictionary containing the following keys: 'img' (numpy.ndarray): The image to be flipped. 'instances' (ultralytics.utils.instance.Instances): An object containing bounding boxes and optionally keypoints.

required

Returns:

Type Description
Dict

The same dictionary with the flipped image and updated instances: 'img' (numpy.ndarray): The flipped image. 'instances' (ultralytics.utils.instance.Instances): Updated instances matching the flipped image.

Examples:

>>> labels = {"img": np.random.rand(640, 640, 3), "instances": Instances(...)}
>>> random_flip = RandomFlip(p=0.5, direction="horizontal")
>>> flipped_labels = random_flip(labels)
Source code in ultralytics/data/augment.py
def __call__(self, labels):
    """
    Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly.

    This method randomly flips the input image either horizontally or vertically based on the initialized
    probability and direction. It also updates the corresponding instances (bounding boxes, keypoints) to
    match the flipped image.

    Args:
        labels (Dict): A dictionary containing the following keys:
            'img' (numpy.ndarray): The image to be flipped.
            'instances' (ultralytics.utils.instance.Instances): An object containing bounding boxes and
                optionally keypoints.

    Returns:
        (Dict): The same dictionary with the flipped image and updated instances:
            'img' (numpy.ndarray): The flipped image.
            'instances' (ultralytics.utils.instance.Instances): Updated instances matching the flipped image.

    Examples:
        >>> labels = {"img": np.random.rand(640, 640, 3), "instances": Instances(...)}
        >>> random_flip = RandomFlip(p=0.5, direction="horizontal")
        >>> flipped_labels = random_flip(labels)
    """
    img = labels["img"]
    instances = labels.pop("instances")
    instances.convert_bbox(format="xywh")
    h, w = img.shape[:2]
    h = 1 if instances.normalized else h
    w = 1 if instances.normalized else w

    # Flip up-down
    if self.direction == "vertical" and random.random() < self.p:
        img = np.flipud(img)
        instances.flipud(h)
    if self.direction == "horizontal" and random.random() < self.p:
        img = np.fliplr(img)
        instances.fliplr(w)
        # For keypoints
        if self.flip_idx is not None and instances.keypoints is not None:
            instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :])
    labels["img"] = np.ascontiguousarray(img)
    labels["instances"] = instances
    return labels





ultralytics.data.augment.LetterBox

LetterBox(
    new_shape=(640, 640),
    auto=False,
    scaleFill=False,
    scaleup=True,
    center=True,
    stride=32,
)

Resize image and padding for detection, instance segmentation, pose.

This class resizes and pads images to a specified shape while preserving aspect ratio. It also updates corresponding labels and bounding boxes.

Attributes:

Name Type Description
new_shape tuple

Target shape (height, width) for resizing.

auto bool

Whether to use minimum rectangle.

scaleFill bool

Whether to stretch the image to new_shape.

scaleup bool

Whether to allow scaling up. If False, only scale down.

stride int

Stride for rounding padding.

center bool

Whether to center the image or align to top-left.

Methods:

Name Description
__call__

Resize and pad image, update labels and bounding boxes.

Examples:

>>> transform = LetterBox(new_shape=(640, 640))
>>> result = transform(labels)
>>> resized_img = result["img"]
>>> updated_instances = result["instances"]

This class is designed to resize and pad images for object detection, instance segmentation, and pose estimation tasks. It supports various resizing modes including auto-sizing, scale-fill, and letterboxing.

Parameters:

Name Type Description Default
new_shape Tuple[int, int]

Target size (height, width) for the resized image.

(640, 640)
auto bool

If True, use minimum rectangle to resize. If False, use new_shape directly.

False
scaleFill bool

If True, stretch the image to new_shape without padding.

False
scaleup bool

If True, allow scaling up. If False, only scale down.

True
center bool

If True, center the placed image. If False, place image in top-left corner.

True
stride int

Stride of the model (e.g., 32 for YOLOv5).

32

Attributes:

Name Type Description
new_shape Tuple[int, int]

Target size for the resized image.

auto bool

Flag for using minimum rectangle resizing.

scaleFill bool

Flag for stretching image without padding.

scaleup bool

Flag for allowing upscaling.

stride int

Stride value for ensuring image size is divisible by stride.

Examples:

>>> letterbox = LetterBox(new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32)
>>> resized_img = letterbox(original_img)
Source code in ultralytics/data/augment.py
def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32):
    """
    Initialize LetterBox object for resizing and padding images.

    This class is designed to resize and pad images for object detection, instance segmentation, and pose estimation
    tasks. It supports various resizing modes including auto-sizing, scale-fill, and letterboxing.

    Args:
        new_shape (Tuple[int, int]): Target size (height, width) for the resized image.
        auto (bool): If True, use minimum rectangle to resize. If False, use new_shape directly.
        scaleFill (bool): If True, stretch the image to new_shape without padding.
        scaleup (bool): If True, allow scaling up. If False, only scale down.
        center (bool): If True, center the placed image. If False, place image in top-left corner.
        stride (int): Stride of the model (e.g., 32 for YOLOv5).

    Attributes:
        new_shape (Tuple[int, int]): Target size for the resized image.
        auto (bool): Flag for using minimum rectangle resizing.
        scaleFill (bool): Flag for stretching image without padding.
        scaleup (bool): Flag for allowing upscaling.
        stride (int): Stride value for ensuring image size is divisible by stride.

    Examples:
        >>> letterbox = LetterBox(new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32)
        >>> resized_img = letterbox(original_img)
    """
    self.new_shape = new_shape
    self.auto = auto
    self.scaleFill = scaleFill
    self.scaleup = scaleup
    self.stride = stride
    self.center = center  # Put the image in the middle or top-left

__call__

__call__(labels=None, image=None)

Resizes and pads an image for object detection, instance segmentation, or pose estimation tasks.

This method applies letterboxing to the input image, which involves resizing the image while maintaining its aspect ratio and adding padding to fit the new shape. It also updates any associated labels accordingly.

Parameters:

Name Type Description Default
labels Dict | None

A dictionary containing image data and associated labels, or empty dict if None.

None
image ndarray | None

The input image as a numpy array. If None, the image is taken from 'labels'.

None

Returns:

Type Description
Dict | Tuple

If 'labels' is provided, returns an updated dictionary with the resized and padded image, updated labels, and additional metadata. If 'labels' is empty, returns a tuple containing the resized and padded image, and a tuple of (ratio, (left_pad, top_pad)).

Examples:

>>> letterbox = LetterBox(new_shape=(640, 640))
>>> result = letterbox(labels={"img": np.zeros((480, 640, 3)), "instances": Instances(...)})
>>> resized_img = result["img"]
>>> updated_instances = result["instances"]
Source code in ultralytics/data/augment.py
def __call__(self, labels=None, image=None):
    """
    Resizes and pads an image for object detection, instance segmentation, or pose estimation tasks.

    This method applies letterboxing to the input image, which involves resizing the image while maintaining its
    aspect ratio and adding padding to fit the new shape. It also updates any associated labels accordingly.

    Args:
        labels (Dict | None): A dictionary containing image data and associated labels, or empty dict if None.
        image (np.ndarray | None): The input image as a numpy array. If None, the image is taken from 'labels'.

    Returns:
        (Dict | Tuple): If 'labels' is provided, returns an updated dictionary with the resized and padded image,
            updated labels, and additional metadata. If 'labels' is empty, returns a tuple containing the resized
            and padded image, and a tuple of (ratio, (left_pad, top_pad)).

    Examples:
        >>> letterbox = LetterBox(new_shape=(640, 640))
        >>> result = letterbox(labels={"img": np.zeros((480, 640, 3)), "instances": Instances(...)})
        >>> resized_img = result["img"]
        >>> updated_instances = result["instances"]
    """
    if labels is None:
        labels = {}
    img = labels.get("img") if image is None else image
    shape = img.shape[:2]  # current shape [height, width]
    new_shape = labels.pop("rect_shape", self.new_shape)
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not self.scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if self.auto:  # minimum rectangle
        dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride)  # wh padding
    elif self.scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    if self.center:
        dw /= 2  # divide padding into 2 sides
        dh /= 2

    if shape[::-1] != new_unpad:  # resize
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
    img = cv2.copyMakeBorder(
        img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
    )  # add border
    if labels.get("ratio_pad"):
        labels["ratio_pad"] = (labels["ratio_pad"], (left, top))  # for evaluation

    if len(labels):
        labels = self._update_labels(labels, ratio, left, top)
        labels["img"] = img
        labels["resized_shape"] = new_shape
        return labels
    else:
        return img





ultralytics.data.augment.CopyPaste

CopyPaste(dataset=None, pre_transform=None, p=0.5, mode='flip')

Bases: BaseMixTransform

CopyPaste class for applying Copy-Paste augmentation to image datasets.

This class implements the Copy-Paste augmentation technique as described in the paper "Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation" (https://arxiv.org/abs/2012.07177). It combines objects from different images to create new training samples.

Attributes:

Name Type Description
dataset Any

The dataset to which Copy-Paste augmentation will be applied.

pre_transform Callable | None

Optional transform to apply before Copy-Paste.

p float

Probability of applying Copy-Paste augmentation.

Methods:

Name Description
get_indexes

Returns a random index from the dataset.

_mix_transform

Applies Copy-Paste augmentation to the input labels.

__call__

Applies the Copy-Paste transformation to images and annotations.

Examples:

>>> from ultralytics.data.augment import CopyPaste
>>> dataset = YourDataset(...)  # Your image dataset
>>> copypaste = CopyPaste(dataset, p=0.5)
>>> augmented_labels = copypaste(original_labels)
Source code in ultralytics/data/augment.py
def __init__(self, dataset=None, pre_transform=None, p=0.5, mode="flip") -> None:
    """Initializes CopyPaste object with dataset, pre_transform, and probability of applying MixUp."""
    super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)
    assert mode in {"flip", "mixup"}, f"Expected `mode` to be `flip` or `mixup`, but got {mode}."
    self.mode = mode

__call__

__call__(labels)

Applies Copy-Paste augmentation to an image and its labels.

Source code in ultralytics/data/augment.py
def __call__(self, labels):
    """Applies Copy-Paste augmentation to an image and its labels."""
    if len(labels["instances"].segments) == 0 or self.p == 0:
        return labels
    if self.mode == "flip":
        return self._transform(labels)

    # Get index of one or three other images
    indexes = self.get_indexes()
    if isinstance(indexes, int):
        indexes = [indexes]

    # Get images information will be used for Mosaic or MixUp
    mix_labels = [self.dataset.get_image_and_label(i) for i in indexes]

    if self.pre_transform is not None:
        for i, data in enumerate(mix_labels):
            mix_labels[i] = self.pre_transform(data)
    labels["mix_labels"] = mix_labels

    # Update cls and texts
    labels = self._update_label_text(labels)
    # Mosaic or MixUp
    labels = self._mix_transform(labels)
    labels.pop("mix_labels", None)
    return labels

get_indexes

get_indexes()

Returns a list of random indexes from the dataset for CopyPaste augmentation.

Source code in ultralytics/data/augment.py
def get_indexes(self):
    """Returns a list of random indexes from the dataset for CopyPaste augmentation."""
    return random.randint(0, len(self.dataset) - 1)





ultralytics.data.augment.Albumentations

Albumentations(p=1.0)

Albumentations transformations for image augmentation.

This class applies various image transformations using the Albumentations library. It includes operations such as Blur, Median Blur, conversion to grayscale, Contrast Limited Adaptive Histogram Equalization (CLAHE), random changes in brightness and contrast, RandomGamma, and image quality reduction through compression.

Attributes:

Name Type Description
p float

Probability of applying the transformations.

transform Compose

Composed Albumentations transforms.

contains_spatial bool

Indicates if the transforms include spatial operations.

Methods:

Name Description
__call__

Applies the Albumentations transformations to the input labels.

Examples:

>>> transform = Albumentations(p=0.5)
>>> augmented_labels = transform(labels)
Notes
  • The Albumentations package must be installed to use this class.
  • If the package is not installed or an error occurs during initialization, the transform will be set to None.
  • Spatial transforms are handled differently and require special processing for bounding boxes.

This class applies various image augmentations using the Albumentations library, including Blur, Median Blur, conversion to grayscale, Contrast Limited Adaptive Histogram Equalization, random changes of brightness and contrast, RandomGamma, and image quality reduction through compression.

Parameters:

Name Type Description Default
p float

Probability of applying the augmentations. Must be between 0 and 1.

1.0

Attributes:

Name Type Description
p float

Probability of applying the augmentations.

transform Compose

Composed Albumentations transforms.

contains_spatial bool

Indicates if the transforms include spatial transformations.

Raises:

Type Description
ImportError

If the Albumentations package is not installed.

Exception

For any other errors during initialization.

Examples:

>>> transform = Albumentations(p=0.5)
>>> augmented = transform(image=image, bboxes=bboxes, class_labels=classes)
>>> augmented_image = augmented["image"]
>>> augmented_bboxes = augmented["bboxes"]
Notes
  • Requires Albumentations version 1.0.3 or higher.
  • Spatial transforms are handled differently to ensure bbox compatibility.
  • Some transforms are applied with very low probability (0.01) by default.
Source code in ultralytics/data/augment.py
def __init__(self, p=1.0):
    """
    Initialize the Albumentations transform object for YOLO bbox formatted parameters.

    This class applies various image augmentations using the Albumentations library, including Blur, Median Blur,
    conversion to grayscale, Contrast Limited Adaptive Histogram Equalization, random changes of brightness and
    contrast, RandomGamma, and image quality reduction through compression.

    Args:
        p (float): Probability of applying the augmentations. Must be between 0 and 1.

    Attributes:
        p (float): Probability of applying the augmentations.
        transform (albumentations.Compose): Composed Albumentations transforms.
        contains_spatial (bool): Indicates if the transforms include spatial transformations.

    Raises:
        ImportError: If the Albumentations package is not installed.
        Exception: For any other errors during initialization.

    Examples:
        >>> transform = Albumentations(p=0.5)
        >>> augmented = transform(image=image, bboxes=bboxes, class_labels=classes)
        >>> augmented_image = augmented["image"]
        >>> augmented_bboxes = augmented["bboxes"]

    Notes:
        - Requires Albumentations version 1.0.3 or higher.
        - Spatial transforms are handled differently to ensure bbox compatibility.
        - Some transforms are applied with very low probability (0.01) by default.
    """
    self.p = p
    self.transform = None
    prefix = colorstr("albumentations: ")

    try:
        import albumentations as A

        check_version(A.__version__, "1.0.3", hard=True)  # version requirement

        # List of possible spatial transforms
        spatial_transforms = {
            "Affine",
            "BBoxSafeRandomCrop",
            "CenterCrop",
            "CoarseDropout",
            "Crop",
            "CropAndPad",
            "CropNonEmptyMaskIfExists",
            "D4",
            "ElasticTransform",
            "Flip",
            "GridDistortion",
            "GridDropout",
            "HorizontalFlip",
            "Lambda",
            "LongestMaxSize",
            "MaskDropout",
            "MixUp",
            "Morphological",
            "NoOp",
            "OpticalDistortion",
            "PadIfNeeded",
            "Perspective",
            "PiecewiseAffine",
            "PixelDropout",
            "RandomCrop",
            "RandomCropFromBorders",
            "RandomGridShuffle",
            "RandomResizedCrop",
            "RandomRotate90",
            "RandomScale",
            "RandomSizedBBoxSafeCrop",
            "RandomSizedCrop",
            "Resize",
            "Rotate",
            "SafeRotate",
            "ShiftScaleRotate",
            "SmallestMaxSize",
            "Transpose",
            "VerticalFlip",
            "XYMasking",
        }  # from https://albumentations.ai/docs/getting_started/transforms_and_targets/#spatial-level-transforms

        # Transforms
        T = [
            A.Blur(p=0.01),
            A.MedianBlur(p=0.01),
            A.ToGray(p=0.01),
            A.CLAHE(p=0.01),
            A.RandomBrightnessContrast(p=0.0),
            A.RandomGamma(p=0.0),
            A.ImageCompression(quality_lower=75, p=0.0),
        ]

        # Compose transforms
        self.contains_spatial = any(transform.__class__.__name__ in spatial_transforms for transform in T)
        self.transform = (
            A.Compose(T, bbox_params=A.BboxParams(format="yolo", label_fields=["class_labels"]))
            if self.contains_spatial
            else A.Compose(T)
        )
        LOGGER.info(prefix + ", ".join(f"{x}".replace("always_apply=False, ", "") for x in T if x.p))
    except ImportError:  # package not installed, skip
        pass
    except Exception as e:
        LOGGER.info(f"{prefix}{e}")

__call__

__call__(labels)

Applies Albumentations transformations to input labels.

This method applies a series of image augmentations using the Albumentations library. It can perform both spatial and non-spatial transformations on the input image and its corresponding labels.

Parameters:

Name Type Description Default
labels Dict

A dictionary containing image data and annotations. Expected keys are: - 'img': numpy.ndarray representing the image - 'cls': numpy.ndarray of class labels - 'instances': object containing bounding boxes and other instance information

required

Returns:

Type Description
Dict

The input dictionary with augmented image and updated annotations.

Examples:

>>> transform = Albumentations(p=0.5)
>>> labels = {
...     "img": np.random.rand(640, 640, 3),
...     "cls": np.array([0, 1]),
...     "instances": Instances(bboxes=np.array([[0, 0, 1, 1], [0.5, 0.5, 0.8, 0.8]])),
... }
>>> augmented = transform(labels)
>>> assert augmented["img"].shape == (640, 640, 3)
Notes
  • The method applies transformations with probability self.p.
  • Spatial transforms update bounding boxes, while non-spatial transforms only modify the image.
  • Requires the Albumentations library to be installed.
Source code in ultralytics/data/augment.py
def __call__(self, labels):
    """
    Applies Albumentations transformations to input labels.

    This method applies a series of image augmentations using the Albumentations library. It can perform both
    spatial and non-spatial transformations on the input image and its corresponding labels.

    Args:
        labels (Dict): A dictionary containing image data and annotations. Expected keys are:
            - 'img': numpy.ndarray representing the image
            - 'cls': numpy.ndarray of class labels
            - 'instances': object containing bounding boxes and other instance information

    Returns:
        (Dict): The input dictionary with augmented image and updated annotations.

    Examples:
        >>> transform = Albumentations(p=0.5)
        >>> labels = {
        ...     "img": np.random.rand(640, 640, 3),
        ...     "cls": np.array([0, 1]),
        ...     "instances": Instances(bboxes=np.array([[0, 0, 1, 1], [0.5, 0.5, 0.8, 0.8]])),
        ... }
        >>> augmented = transform(labels)
        >>> assert augmented["img"].shape == (640, 640, 3)

    Notes:
        - The method applies transformations with probability self.p.
        - Spatial transforms update bounding boxes, while non-spatial transforms only modify the image.
        - Requires the Albumentations library to be installed.
    """
    if self.transform is None or random.random() > self.p:
        return labels

    if self.contains_spatial:
        cls = labels["cls"]
        if len(cls):
            im = labels["img"]
            labels["instances"].convert_bbox("xywh")
            labels["instances"].normalize(*im.shape[:2][::-1])
            bboxes = labels["instances"].bboxes
            # TODO: add supports of segments and keypoints
            new = self.transform(image=im, bboxes=bboxes, class_labels=cls)  # transformed
            if len(new["class_labels"]) > 0:  # skip update if no bbox in new im
                labels["img"] = new["image"]
                labels["cls"] = np.array(new["class_labels"])
                bboxes = np.array(new["bboxes"], dtype=np.float32)
            labels["instances"].update(bboxes=bboxes)
    else:
        labels["img"] = self.transform(image=labels["img"])["image"]  # transformed

    return labels





ultralytics.data.augment.Format

Format(
    bbox_format="xywh",
    normalize=True,
    return_mask=False,
    return_keypoint=False,
    return_obb=False,
    mask_ratio=4,
    mask_overlap=True,
    batch_idx=True,
    bgr=0.0,
)

A class for formatting image annotations for object detection, instance segmentation, and pose estimation tasks.

This class standardizes image and instance annotations to be used by the collate_fn in PyTorch DataLoader.

Attributes:

Name Type Description
bbox_format str

Format for bounding boxes. Options are 'xywh' or 'xyxy'.

normalize bool

Whether to normalize bounding boxes.

return_mask bool

Whether to return instance masks for segmentation.

return_keypoint bool

Whether to return keypoints for pose estimation.

return_obb bool

Whether to return oriented bounding boxes.

mask_ratio int

Downsample ratio for masks.

mask_overlap bool

Whether to overlap masks.

batch_idx bool

Whether to keep batch indexes.

bgr float

The probability to return BGR images.

Methods:

Name Description
__call__

Formats labels dictionary with image, classes, bounding boxes, and optionally masks and keypoints.

_format_img

Converts image from Numpy array to PyTorch tensor.

_format_segments

Converts polygon points to bitmap masks.

Examples:

>>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True)
>>> formatted_labels = formatter(labels)
>>> img = formatted_labels["img"]
>>> bboxes = formatted_labels["bboxes"]
>>> masks = formatted_labels["masks"]

This class standardizes image and instance annotations for object detection, instance segmentation, and pose estimation tasks, preparing them for use in PyTorch DataLoader's collate_fn.

Parameters:

Name Type Description Default
bbox_format str

Format for bounding boxes. Options are 'xywh', 'xyxy', etc.

'xywh'
normalize bool

Whether to normalize bounding boxes to [0,1].

True
return_mask bool

If True, returns instance masks for segmentation tasks.

False
return_keypoint bool

If True, returns keypoints for pose estimation tasks.

False
return_obb bool

If True, returns oriented bounding boxes.

False
mask_ratio int

Downsample ratio for masks.

4
mask_overlap bool

If True, allows mask overlap.

True
batch_idx bool

If True, keeps batch indexes.

True
bgr float

Probability of returning BGR images instead of RGB.

0.0

Attributes:

Name Type Description
bbox_format str

Format for bounding boxes.

normalize bool

Whether bounding boxes are normalized.

return_mask bool

Whether to return instance masks.

return_keypoint bool

Whether to return keypoints.

return_obb bool

Whether to return oriented bounding boxes.

mask_ratio int

Downsample ratio for masks.

mask_overlap bool

Whether masks can overlap.

batch_idx bool

Whether to keep batch indexes.

bgr float

The probability to return BGR images.

Examples:

>>> format = Format(bbox_format="xyxy", return_mask=True, return_keypoint=False)
>>> print(format.bbox_format)
xyxy
Source code in ultralytics/data/augment.py
def __init__(
    self,
    bbox_format="xywh",
    normalize=True,
    return_mask=False,
    return_keypoint=False,
    return_obb=False,
    mask_ratio=4,
    mask_overlap=True,
    batch_idx=True,
    bgr=0.0,
):
    """
    Initializes the Format class with given parameters for image and instance annotation formatting.

    This class standardizes image and instance annotations for object detection, instance segmentation, and pose
    estimation tasks, preparing them for use in PyTorch DataLoader's `collate_fn`.

    Args:
        bbox_format (str): Format for bounding boxes. Options are 'xywh', 'xyxy', etc.
        normalize (bool): Whether to normalize bounding boxes to [0,1].
        return_mask (bool): If True, returns instance masks for segmentation tasks.
        return_keypoint (bool): If True, returns keypoints for pose estimation tasks.
        return_obb (bool): If True, returns oriented bounding boxes.
        mask_ratio (int): Downsample ratio for masks.
        mask_overlap (bool): If True, allows mask overlap.
        batch_idx (bool): If True, keeps batch indexes.
        bgr (float): Probability of returning BGR images instead of RGB.

    Attributes:
        bbox_format (str): Format for bounding boxes.
        normalize (bool): Whether bounding boxes are normalized.
        return_mask (bool): Whether to return instance masks.
        return_keypoint (bool): Whether to return keypoints.
        return_obb (bool): Whether to return oriented bounding boxes.
        mask_ratio (int): Downsample ratio for masks.
        mask_overlap (bool): Whether masks can overlap.
        batch_idx (bool): Whether to keep batch indexes.
        bgr (float): The probability to return BGR images.

    Examples:
        >>> format = Format(bbox_format="xyxy", return_mask=True, return_keypoint=False)
        >>> print(format.bbox_format)
        xyxy
    """
    self.bbox_format = bbox_format
    self.normalize = normalize
    self.return_mask = return_mask  # set False when training detection only
    self.return_keypoint = return_keypoint
    self.return_obb = return_obb
    self.mask_ratio = mask_ratio
    self.mask_overlap = mask_overlap
    self.batch_idx = batch_idx  # keep the batch indexes
    self.bgr = bgr

__call__

__call__(labels)

Formats image annotations for object detection, instance segmentation, and pose estimation tasks.

This method standardizes the image and instance annotations to be used by the collate_fn in PyTorch DataLoader. It processes the input labels dictionary, converting annotations to the specified format and applying normalization if required.

Parameters:

Name Type Description Default
labels Dict

A dictionary containing image and annotation data with the following keys: - 'img': The input image as a numpy array. - 'cls': Class labels for instances. - 'instances': An Instances object containing bounding boxes, segments, and keypoints.

required

Returns:

Type Description
Dict

A dictionary with formatted data, including: - 'img': Formatted image tensor. - 'cls': Class labels tensor. - 'bboxes': Bounding boxes tensor in the specified format. - 'masks': Instance masks tensor (if return_mask is True). - 'keypoints': Keypoints tensor (if return_keypoint is True). - 'batch_idx': Batch index tensor (if batch_idx is True).

Examples:

>>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True)
>>> labels = {"img": np.random.rand(640, 640, 3), "cls": np.array([0, 1]), "instances": Instances(...)}
>>> formatted_labels = formatter(labels)
>>> print(formatted_labels.keys())
Source code in ultralytics/data/augment.py
def __call__(self, labels):
    """
    Formats image annotations for object detection, instance segmentation, and pose estimation tasks.

    This method standardizes the image and instance annotations to be used by the `collate_fn` in PyTorch
    DataLoader. It processes the input labels dictionary, converting annotations to the specified format and
    applying normalization if required.

    Args:
        labels (Dict): A dictionary containing image and annotation data with the following keys:
            - 'img': The input image as a numpy array.
            - 'cls': Class labels for instances.
            - 'instances': An Instances object containing bounding boxes, segments, and keypoints.

    Returns:
        (Dict): A dictionary with formatted data, including:
            - 'img': Formatted image tensor.
            - 'cls': Class labels tensor.
            - 'bboxes': Bounding boxes tensor in the specified format.
            - 'masks': Instance masks tensor (if return_mask is True).
            - 'keypoints': Keypoints tensor (if return_keypoint is True).
            - 'batch_idx': Batch index tensor (if batch_idx is True).

    Examples:
        >>> formatter = Format(bbox_format="xywh", normalize=True, return_mask=True)
        >>> labels = {"img": np.random.rand(640, 640, 3), "cls": np.array([0, 1]), "instances": Instances(...)}
        >>> formatted_labels = formatter(labels)
        >>> print(formatted_labels.keys())
    """
    img = labels.pop("img")
    h, w = img.shape[:2]
    cls = labels.pop("cls")
    instances = labels.pop("instances")
    instances.convert_bbox(format=self.bbox_format)
    instances.denormalize(w, h)
    nl = len(instances)

    if self.return_mask:
        if nl:
            masks, instances, cls = self._format_segments(instances, cls, w, h)
            masks = torch.from_numpy(masks)
        else:
            masks = torch.zeros(
                1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, img.shape[1] // self.mask_ratio
            )
        labels["masks"] = masks
    labels["img"] = self._format_img(img)
    labels["cls"] = torch.from_numpy(cls) if nl else torch.zeros(nl)
    labels["bboxes"] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4))
    if self.return_keypoint:
        labels["keypoints"] = torch.from_numpy(instances.keypoints)
        if self.normalize:
            labels["keypoints"][..., 0] /= w
            labels["keypoints"][..., 1] /= h
    if self.return_obb:
        labels["bboxes"] = (
            xyxyxyxy2xywhr(torch.from_numpy(instances.segments)) if len(instances.segments) else torch.zeros((0, 5))
        )
    # NOTE: need to normalize obb in xywhr format for width-height consistency
    if self.normalize:
        labels["bboxes"][:, [0, 2]] /= w
        labels["bboxes"][:, [1, 3]] /= h
    # Then we can use collate_fn
    if self.batch_idx:
        labels["batch_idx"] = torch.zeros(nl)
    return labels





ultralytics.data.augment.RandomLoadText

RandomLoadText(
    prompt_format: str = "{}",
    neg_samples: Tuple[int, int] = (80, 80),
    max_samples: int = 80,
    padding: bool = False,
    padding_value: str = "",
)

Randomly samples positive and negative texts and updates class indices accordingly.

This class is responsible for sampling texts from a given set of class texts, including both positive (present in the image) and negative (not present in the image) samples. It updates the class indices to reflect the sampled texts and can optionally pad the text list to a fixed length.

Attributes:

Name Type Description
prompt_format str

Format string for text prompts.

neg_samples Tuple[int, int]

Range for randomly sampling negative texts.

max_samples int

Maximum number of different text samples in one image.

padding bool

Whether to pad texts to max_samples.

padding_value str

The text used for padding when padding is True.

Methods:

Name Description
__call__

Processes the input labels and returns updated classes and texts.

Examples:

>>> loader = RandomLoadText(prompt_format="Object: {}", neg_samples=(5, 10), max_samples=20)
>>> labels = {"cls": [0, 1, 2], "texts": [["cat"], ["dog"], ["bird"]], "instances": [...]}
>>> updated_labels = loader(labels)
>>> print(updated_labels["texts"])
['Object: cat', 'Object: dog', 'Object: bird', 'Object: elephant', 'Object: car']

This class is designed to randomly sample positive texts and negative texts, and update the class indices accordingly to the number of samples. It can be used for text-based object detection tasks.

Parameters:

Name Type Description Default
prompt_format str

Format string for the prompt. Default is '{}'. The format string should contain a single pair of curly braces {} where the text will be inserted.

'{}'
neg_samples Tuple[int, int]

A range to randomly sample negative texts. The first integer specifies the minimum number of negative samples, and the second integer specifies the maximum. Default is (80, 80).

(80, 80)
max_samples int

The maximum number of different text samples in one image. Default is 80.

80
padding bool

Whether to pad texts to max_samples. If True, the number of texts will always be equal to max_samples. Default is False.

False
padding_value str

The padding text to use when padding is True. Default is an empty string.

''

Attributes:

Name Type Description
prompt_format str

The format string for the prompt.

neg_samples Tuple[int, int]

The range for sampling negative texts.

max_samples int

The maximum number of text samples.

padding bool

Whether padding is enabled.

padding_value str

The value used for padding.

Examples:

>>> random_load_text = RandomLoadText(prompt_format="Object: {}", neg_samples=(50, 100), max_samples=120)
>>> random_load_text.prompt_format
'Object: {}'
>>> random_load_text.neg_samples
(50, 100)
>>> random_load_text.max_samples
120
Source code in ultralytics/data/augment.py
def __init__(
    self,
    prompt_format: str = "{}",
    neg_samples: Tuple[int, int] = (80, 80),
    max_samples: int = 80,
    padding: bool = False,
    padding_value: str = "",
) -> None:
    """
    Initializes the RandomLoadText class for randomly sampling positive and negative texts.

    This class is designed to randomly sample positive texts and negative texts, and update the class
    indices accordingly to the number of samples. It can be used for text-based object detection tasks.

    Args:
        prompt_format (str): Format string for the prompt. Default is '{}'. The format string should
            contain a single pair of curly braces {} where the text will be inserted.
        neg_samples (Tuple[int, int]): A range to randomly sample negative texts. The first integer
            specifies the minimum number of negative samples, and the second integer specifies the
            maximum. Default is (80, 80).
        max_samples (int): The maximum number of different text samples in one image. Default is 80.
        padding (bool): Whether to pad texts to max_samples. If True, the number of texts will always
            be equal to max_samples. Default is False.
        padding_value (str): The padding text to use when padding is True. Default is an empty string.

    Attributes:
        prompt_format (str): The format string for the prompt.
        neg_samples (Tuple[int, int]): The range for sampling negative texts.
        max_samples (int): The maximum number of text samples.
        padding (bool): Whether padding is enabled.
        padding_value (str): The value used for padding.

    Examples:
        >>> random_load_text = RandomLoadText(prompt_format="Object: {}", neg_samples=(50, 100), max_samples=120)
        >>> random_load_text.prompt_format
        'Object: {}'
        >>> random_load_text.neg_samples
        (50, 100)
        >>> random_load_text.max_samples
        120
    """
    self.prompt_format = prompt_format
    self.neg_samples = neg_samples
    self.max_samples = max_samples
    self.padding = padding
    self.padding_value = padding_value

__call__

__call__(labels: dict) -> dict

Randomly samples positive and negative texts and updates class indices accordingly.

This method samples positive texts based on the existing class labels in the image, and randomly selects negative texts from the remaining classes. It then updates the class indices to match the new sampled text order.

Parameters:

Name Type Description Default
labels Dict

A dictionary containing image labels and metadata. Must include 'texts' and 'cls' keys.

required

Returns:

Type Description
Dict

Updated labels dictionary with new 'cls' and 'texts' entries.

Examples:

>>> loader = RandomLoadText(prompt_format="A photo of {}", neg_samples=(5, 10), max_samples=20)
>>> labels = {"cls": np.array([[0], [1], [2]]), "texts": [["dog"], ["cat"], ["bird"]]}
>>> updated_labels = loader(labels)
Source code in ultralytics/data/augment.py
def __call__(self, labels: dict) -> dict:
    """
    Randomly samples positive and negative texts and updates class indices accordingly.

    This method samples positive texts based on the existing class labels in the image, and randomly
    selects negative texts from the remaining classes. It then updates the class indices to match the
    new sampled text order.

    Args:
        labels (Dict): A dictionary containing image labels and metadata. Must include 'texts' and 'cls' keys.

    Returns:
        (Dict): Updated labels dictionary with new 'cls' and 'texts' entries.

    Examples:
        >>> loader = RandomLoadText(prompt_format="A photo of {}", neg_samples=(5, 10), max_samples=20)
        >>> labels = {"cls": np.array([[0], [1], [2]]), "texts": [["dog"], ["cat"], ["bird"]]}
        >>> updated_labels = loader(labels)
    """
    assert "texts" in labels, "No texts found in labels."
    class_texts = labels["texts"]
    num_classes = len(class_texts)
    cls = np.asarray(labels.pop("cls"), dtype=int)
    pos_labels = np.unique(cls).tolist()

    if len(pos_labels) > self.max_samples:
        pos_labels = random.sample(pos_labels, k=self.max_samples)

    neg_samples = min(min(num_classes, self.max_samples) - len(pos_labels), random.randint(*self.neg_samples))
    neg_labels = [i for i in range(num_classes) if i not in pos_labels]
    neg_labels = random.sample(neg_labels, k=neg_samples)

    sampled_labels = pos_labels + neg_labels
    random.shuffle(sampled_labels)

    label2ids = {label: i for i, label in enumerate(sampled_labels)}
    valid_idx = np.zeros(len(labels["instances"]), dtype=bool)
    new_cls = []
    for i, label in enumerate(cls.squeeze(-1).tolist()):
        if label not in label2ids:
            continue
        valid_idx[i] = True
        new_cls.append([label2ids[label]])
    labels["instances"] = labels["instances"][valid_idx]
    labels["cls"] = np.array(new_cls)

    # Randomly select one prompt when there's more than one prompts
    texts = []
    for label in sampled_labels:
        prompts = class_texts[label]
        assert len(prompts) > 0
        prompt = self.prompt_format.format(prompts[random.randrange(len(prompts))])
        texts.append(prompt)

    if self.padding:
        valid_labels = len(pos_labels) + len(neg_labels)
        num_padding = self.max_samples - valid_labels
        if num_padding > 0:
            texts += [self.padding_value] * num_padding

    labels["texts"] = texts
    return labels





ultralytics.data.augment.ClassifyLetterBox

ClassifyLetterBox(size=(640, 640), auto=False, stride=32)

A class for resizing and padding images for classification tasks.

This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]). It resizes and pads images to a specified size while maintaining the original aspect ratio.

Attributes:

Name Type Description
h int

Target height of the image.

w int

Target width of the image.

auto bool

If True, automatically calculates the short side using stride.

stride int

The stride value, used when 'auto' is True.

Methods:

Name Description
__call__

Applies the letterbox transformation to an input image.

Examples:

>>> transform = ClassifyLetterBox(size=(640, 640), auto=False, stride=32)
>>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
>>> result = transform(img)
>>> print(result.shape)
(640, 640, 3)

This class is designed to be part of a transformation pipeline for image classification tasks. It resizes and pads images to a specified size while maintaining the original aspect ratio.

Parameters:

Name Type Description Default
size int | Tuple[int, int]

Target size for the letterboxed image. If an int, a square image of (size, size) is created. If a tuple, it should be (height, width).

(640, 640)
auto bool

If True, automatically calculates the short side based on stride. Default is False.

False
stride int

The stride value, used when 'auto' is True. Default is 32.

32

Attributes:

Name Type Description
h int

Target height of the letterboxed image.

w int

Target width of the letterboxed image.

auto bool

Flag indicating whether to automatically calculate short side.

stride int

Stride value for automatic short side calculation.

Examples:

>>> transform = ClassifyLetterBox(size=224)
>>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
>>> result = transform(img)
>>> print(result.shape)
(224, 224, 3)
Source code in ultralytics/data/augment.py
def __init__(self, size=(640, 640), auto=False, stride=32):
    """
    Initializes the ClassifyLetterBox object for image preprocessing.

    This class is designed to be part of a transformation pipeline for image classification tasks. It resizes and
    pads images to a specified size while maintaining the original aspect ratio.

    Args:
        size (int | Tuple[int, int]): Target size for the letterboxed image. If an int, a square image of
            (size, size) is created. If a tuple, it should be (height, width).
        auto (bool): If True, automatically calculates the short side based on stride. Default is False.
        stride (int): The stride value, used when 'auto' is True. Default is 32.

    Attributes:
        h (int): Target height of the letterboxed image.
        w (int): Target width of the letterboxed image.
        auto (bool): Flag indicating whether to automatically calculate short side.
        stride (int): Stride value for automatic short side calculation.

    Examples:
        >>> transform = ClassifyLetterBox(size=224)
        >>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
        >>> result = transform(img)
        >>> print(result.shape)
        (224, 224, 3)
    """
    super().__init__()
    self.h, self.w = (size, size) if isinstance(size, int) else size
    self.auto = auto  # pass max size integer, automatically solve for short side using stride
    self.stride = stride  # used with auto

__call__

__call__(im)

Resizes and pads an image using the letterbox method.

This method resizes the input image to fit within the specified dimensions while maintaining its aspect ratio, then pads the resized image to match the target size.

Parameters:

Name Type Description Default
im ndarray

Input image as a numpy array with shape (H, W, C).

required

Returns:

Type Description
ndarray

Resized and padded image as a numpy array with shape (hs, ws, 3), where hs and ws are the target height and width respectively.

Examples:

>>> letterbox = ClassifyLetterBox(size=(640, 640))
>>> image = np.random.randint(0, 255, (720, 1280, 3), dtype=np.uint8)
>>> resized_image = letterbox(image)
>>> print(resized_image.shape)
(640, 640, 3)
Source code in ultralytics/data/augment.py
def __call__(self, im):
    """
    Resizes and pads an image using the letterbox method.

    This method resizes the input image to fit within the specified dimensions while maintaining its aspect ratio,
    then pads the resized image to match the target size.

    Args:
        im (numpy.ndarray): Input image as a numpy array with shape (H, W, C).

    Returns:
        (numpy.ndarray): Resized and padded image as a numpy array with shape (hs, ws, 3), where hs and ws are
            the target height and width respectively.

    Examples:
        >>> letterbox = ClassifyLetterBox(size=(640, 640))
        >>> image = np.random.randint(0, 255, (720, 1280, 3), dtype=np.uint8)
        >>> resized_image = letterbox(image)
        >>> print(resized_image.shape)
        (640, 640, 3)
    """
    imh, imw = im.shape[:2]
    r = min(self.h / imh, self.w / imw)  # ratio of new/old dimensions
    h, w = round(imh * r), round(imw * r)  # resized image dimensions

    # Calculate padding dimensions
    hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else (self.h, self.w)
    top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)

    # Create padded image
    im_out = np.full((hs, ws, 3), 114, dtype=im.dtype)
    im_out[top : top + h, left : left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
    return im_out





ultralytics.data.augment.CenterCrop

CenterCrop(size=640)

Applies center cropping to images for classification tasks.

This class performs center cropping on input images, resizing them to a specified size while maintaining the aspect ratio. It is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]).

Attributes:

Name Type Description
h int

Target height of the cropped image.

w int

Target width of the cropped image.

Methods:

Name Description
__call__

Applies the center crop transformation to an input image.

Examples:

>>> transform = CenterCrop(640)
>>> image = np.random.randint(0, 255, (1080, 1920, 3), dtype=np.uint8)
>>> cropped_image = transform(image)
>>> print(cropped_image.shape)
(640, 640, 3)

This class is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]). It performs a center crop on input images to a specified size.

Parameters:

Name Type Description Default
size int | Tuple[int, int]

The desired output size of the crop. If size is an int, a square crop (size, size) is made. If size is a sequence like (h, w), it is used as the output size.

640

Returns:

Type Description
None

This method initializes the object and does not return anything.

Examples:

>>> transform = CenterCrop(224)
>>> img = np.random.rand(300, 300, 3)
>>> cropped_img = transform(img)
>>> print(cropped_img.shape)
(224, 224, 3)
Source code in ultralytics/data/augment.py
def __init__(self, size=640):
    """
    Initializes the CenterCrop object for image preprocessing.

    This class is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]).
    It performs a center crop on input images to a specified size.

    Args:
        size (int | Tuple[int, int]): The desired output size of the crop. If size is an int, a square crop
            (size, size) is made. If size is a sequence like (h, w), it is used as the output size.

    Returns:
        (None): This method initializes the object and does not return anything.

    Examples:
        >>> transform = CenterCrop(224)
        >>> img = np.random.rand(300, 300, 3)
        >>> cropped_img = transform(img)
        >>> print(cropped_img.shape)
        (224, 224, 3)
    """
    super().__init__()
    self.h, self.w = (size, size) if isinstance(size, int) else size

__call__

__call__(im)

Applies center cropping to an input image.

This method resizes and crops the center of the image using a letterbox method. It maintains the aspect ratio of the original image while fitting it into the specified dimensions.

Parameters:

Name Type Description Default
im ndarray | Image

The input image as a numpy array of shape (H, W, C) or a PIL Image object.

required

Returns:

Type Description
ndarray

The center-cropped and resized image as a numpy array of shape (self.h, self.w, C).

Examples:

>>> transform = CenterCrop(size=224)
>>> image = np.random.randint(0, 255, (640, 480, 3), dtype=np.uint8)
>>> cropped_image = transform(image)
>>> assert cropped_image.shape == (224, 224, 3)
Source code in ultralytics/data/augment.py
def __call__(self, im):
    """
    Applies center cropping to an input image.

    This method resizes and crops the center of the image using a letterbox method. It maintains the aspect
    ratio of the original image while fitting it into the specified dimensions.

    Args:
        im (numpy.ndarray | PIL.Image.Image): The input image as a numpy array of shape (H, W, C) or a
            PIL Image object.

    Returns:
        (numpy.ndarray): The center-cropped and resized image as a numpy array of shape (self.h, self.w, C).

    Examples:
        >>> transform = CenterCrop(size=224)
        >>> image = np.random.randint(0, 255, (640, 480, 3), dtype=np.uint8)
        >>> cropped_image = transform(image)
        >>> assert cropped_image.shape == (224, 224, 3)
    """
    if isinstance(im, Image.Image):  # convert from PIL to numpy array if required
        im = np.asarray(im)
    imh, imw = im.shape[:2]
    m = min(imh, imw)  # min dimension
    top, left = (imh - m) // 2, (imw - m) // 2
    return cv2.resize(im[top : top + m, left : left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)





ultralytics.data.augment.ToTensor

ToTensor(half=False)

Converts an image from a numpy array to a PyTorch tensor.

This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]).

Attributes:

Name Type Description
half bool

If True, converts the image to half precision (float16).

Methods:

Name Description
__call__

Applies the tensor conversion to an input image.

Examples:

>>> transform = ToTensor(half=True)
>>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> tensor_img = transform(img)
>>> print(tensor_img.shape, tensor_img.dtype)
torch.Size([3, 640, 640]) torch.float16
Notes

The input image is expected to be in BGR format with shape (H, W, C). The output tensor will be in RGB format with shape (C, H, W), normalized to [0, 1].

This class is designed to be used as part of a transformation pipeline for image preprocessing in the Ultralytics YOLO framework. It converts numpy arrays or PIL Images to PyTorch tensors, with an option for half-precision (float16) conversion.

Parameters:

Name Type Description Default
half bool

If True, converts the tensor to half precision (float16). Default is False.

False

Examples:

>>> transform = ToTensor(half=True)
>>> img = np.random.rand(640, 640, 3)
>>> tensor_img = transform(img)
>>> print(tensor_img.dtype)
torch.float16
Source code in ultralytics/data/augment.py
def __init__(self, half=False):
    """
    Initializes the ToTensor object for converting images to PyTorch tensors.

    This class is designed to be used as part of a transformation pipeline for image preprocessing in the
    Ultralytics YOLO framework. It converts numpy arrays or PIL Images to PyTorch tensors, with an option
    for half-precision (float16) conversion.

    Args:
        half (bool): If True, converts the tensor to half precision (float16). Default is False.

    Examples:
        >>> transform = ToTensor(half=True)
        >>> img = np.random.rand(640, 640, 3)
        >>> tensor_img = transform(img)
        >>> print(tensor_img.dtype)
        torch.float16
    """
    super().__init__()
    self.half = half

__call__

__call__(im)

Transforms an image from a numpy array to a PyTorch tensor.

This method converts the input image from a numpy array to a PyTorch tensor, applying optional half-precision conversion and normalization. The image is transposed from HWC to CHW format and the color channels are reversed from BGR to RGB.

Parameters:

Name Type Description Default
im ndarray

Input image as a numpy array with shape (H, W, C) in BGR order.

required

Returns:

Type Description
Tensor

The transformed image as a PyTorch tensor in float32 or float16, normalized to [0, 1] with shape (C, H, W) in RGB order.

Examples:

>>> transform = ToTensor(half=True)
>>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
>>> tensor_img = transform(img)
>>> print(tensor_img.shape, tensor_img.dtype)
torch.Size([3, 640, 640]) torch.float16
Source code in ultralytics/data/augment.py
def __call__(self, im):
    """
    Transforms an image from a numpy array to a PyTorch tensor.

    This method converts the input image from a numpy array to a PyTorch tensor, applying optional
    half-precision conversion and normalization. The image is transposed from HWC to CHW format and
    the color channels are reversed from BGR to RGB.

    Args:
        im (numpy.ndarray): Input image as a numpy array with shape (H, W, C) in BGR order.

    Returns:
        (torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized
            to [0, 1] with shape (C, H, W) in RGB order.

    Examples:
        >>> transform = ToTensor(half=True)
        >>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
        >>> tensor_img = transform(img)
        >>> print(tensor_img.shape, tensor_img.dtype)
        torch.Size([3, 640, 640]) torch.float16
    """
    im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1])  # HWC to CHW -> BGR to RGB -> contiguous
    im = torch.from_numpy(im)  # to torch
    im = im.half() if self.half else im.float()  # uint8 to fp16/32
    im /= 255.0  # 0-255 to 0.0-1.0
    return im





ultralytics.data.augment.v8_transforms

v8_transforms(dataset, imgsz, hyp, stretch=False)

Applies a series of image transformations for training.

This function creates a composition of image augmentation techniques to prepare images for YOLO training. It includes operations such as mosaic, copy-paste, random perspective, mixup, and various color adjustments.

Parameters:

Name Type Description Default
dataset Dataset

The dataset object containing image data and annotations.

required
imgsz int

The target image size for resizing.

required
hyp Namespace

A dictionary of hyperparameters controlling various aspects of the transformations.

required
stretch bool

If True, applies stretching to the image. If False, uses LetterBox resizing.

False

Returns:

Type Description
Compose

A composition of image transformations to be applied to the dataset.

Examples:

>>> from ultralytics.data.dataset import YOLODataset
>>> from ultralytics.utils import IterableSimpleNamespace
>>> dataset = YOLODataset(img_path="path/to/images", imgsz=640)
>>> hyp = IterableSimpleNamespace(mosaic=1.0, copy_paste=0.5, degrees=10.0, translate=0.2, scale=0.9)
>>> transforms = v8_transforms(dataset, imgsz=640, hyp=hyp)
>>> augmented_data = transforms(dataset[0])
Source code in ultralytics/data/augment.py
def v8_transforms(dataset, imgsz, hyp, stretch=False):
    """
    Applies a series of image transformations for training.

    This function creates a composition of image augmentation techniques to prepare images for YOLO training.
    It includes operations such as mosaic, copy-paste, random perspective, mixup, and various color adjustments.

    Args:
        dataset (Dataset): The dataset object containing image data and annotations.
        imgsz (int): The target image size for resizing.
        hyp (Namespace): A dictionary of hyperparameters controlling various aspects of the transformations.
        stretch (bool): If True, applies stretching to the image. If False, uses LetterBox resizing.

    Returns:
        (Compose): A composition of image transformations to be applied to the dataset.

    Examples:
        >>> from ultralytics.data.dataset import YOLODataset
        >>> from ultralytics.utils import IterableSimpleNamespace
        >>> dataset = YOLODataset(img_path="path/to/images", imgsz=640)
        >>> hyp = IterableSimpleNamespace(mosaic=1.0, copy_paste=0.5, degrees=10.0, translate=0.2, scale=0.9)
        >>> transforms = v8_transforms(dataset, imgsz=640, hyp=hyp)
        >>> augmented_data = transforms(dataset[0])
    """
    mosaic = Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic)
    affine = RandomPerspective(
        degrees=hyp.degrees,
        translate=hyp.translate,
        scale=hyp.scale,
        shear=hyp.shear,
        perspective=hyp.perspective,
        pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)),
    )

    pre_transform = Compose([mosaic, affine])
    if hyp.copy_paste_mode == "flip":
        pre_transform.insert(1, CopyPaste(p=hyp.copy_paste, mode=hyp.copy_paste_mode))
    else:
        pre_transform.append(
            CopyPaste(
                dataset,
                pre_transform=Compose([Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), affine]),
                p=hyp.copy_paste,
                mode=hyp.copy_paste_mode,
            )
        )
    flip_idx = dataset.data.get("flip_idx", [])  # for keypoints augmentation
    if dataset.use_keypoints:
        kpt_shape = dataset.data.get("kpt_shape", None)
        if len(flip_idx) == 0 and hyp.fliplr > 0.0:
            hyp.fliplr = 0.0
            LOGGER.warning("WARNING ⚠️ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'")
        elif flip_idx and (len(flip_idx) != kpt_shape[0]):
            raise ValueError(f"data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}")

    return Compose(
        [
            pre_transform,
            MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup),
            Albumentations(p=1.0),
            RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v),
            RandomFlip(direction="vertical", p=hyp.flipud),
            RandomFlip(direction="horizontal", p=hyp.fliplr, flip_idx=flip_idx),
        ]
    )  # transforms





ultralytics.data.augment.classify_transforms

classify_transforms(
    size=224,
    mean=DEFAULT_MEAN,
    std=DEFAULT_STD,
    interpolation="BILINEAR",
    crop_fraction: float = DEFAULT_CROP_FRACTION,
)

Creates a composition of image transforms for classification tasks.

This function generates a sequence of torchvision transforms suitable for preprocessing images for classification models during evaluation or inference. The transforms include resizing, center cropping, conversion to tensor, and normalization.

Parameters:

Name Type Description Default
size int | tuple

The target size for the transformed image. If an int, it defines the shortest edge. If a tuple, it defines (height, width).

224
mean tuple

Mean values for each RGB channel used in normalization.

DEFAULT_MEAN
std tuple

Standard deviation values for each RGB channel used in normalization.

DEFAULT_STD
interpolation str

Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'.

'BILINEAR'
crop_fraction float

Fraction of the image to be cropped.

DEFAULT_CROP_FRACTION

Returns:

Type Description
Compose

A composition of torchvision transforms.

Examples:

>>> transforms = classify_transforms(size=224)
>>> img = Image.open("path/to/image.jpg")
>>> transformed_img = transforms(img)
Source code in ultralytics/data/augment.py
def classify_transforms(
    size=224,
    mean=DEFAULT_MEAN,
    std=DEFAULT_STD,
    interpolation="BILINEAR",
    crop_fraction: float = DEFAULT_CROP_FRACTION,
):
    """
    Creates a composition of image transforms for classification tasks.

    This function generates a sequence of torchvision transforms suitable for preprocessing images
    for classification models during evaluation or inference. The transforms include resizing,
    center cropping, conversion to tensor, and normalization.

    Args:
        size (int | tuple): The target size for the transformed image. If an int, it defines the shortest edge. If a
            tuple, it defines (height, width).
        mean (tuple): Mean values for each RGB channel used in normalization.
        std (tuple): Standard deviation values for each RGB channel used in normalization.
        interpolation (str): Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'.
        crop_fraction (float): Fraction of the image to be cropped.

    Returns:
        (torchvision.transforms.Compose): A composition of torchvision transforms.

    Examples:
        >>> transforms = classify_transforms(size=224)
        >>> img = Image.open("path/to/image.jpg")
        >>> transformed_img = transforms(img)
    """
    import torchvision.transforms as T  # scope for faster 'import ultralytics'

    if isinstance(size, (tuple, list)):
        assert len(size) == 2, f"'size' tuples must be length 2, not length {len(size)}"
        scale_size = tuple(math.floor(x / crop_fraction) for x in size)
    else:
        scale_size = math.floor(size / crop_fraction)
        scale_size = (scale_size, scale_size)

    # Aspect ratio is preserved, crops center within image, no borders are added, image is lost
    if scale_size[0] == scale_size[1]:
        # Simple case, use torchvision built-in Resize with the shortest edge mode (scalar size arg)
        tfl = [T.Resize(scale_size[0], interpolation=getattr(T.InterpolationMode, interpolation))]
    else:
        # Resize the shortest edge to matching target dim for non-square target
        tfl = [T.Resize(scale_size)]
    tfl.extend(
        [
            T.CenterCrop(size),
            T.ToTensor(),
            T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)),
        ]
    )
    return T.Compose(tfl)





ultralytics.data.augment.classify_augmentations

classify_augmentations(
    size=224,
    mean=DEFAULT_MEAN,
    std=DEFAULT_STD,
    scale=None,
    ratio=None,
    hflip=0.5,
    vflip=0.0,
    auto_augment=None,
    hsv_h=0.015,
    hsv_s=0.4,
    hsv_v=0.4,
    force_color_jitter=False,
    erasing=0.0,
    interpolation="BILINEAR",
)

Creates a composition of image augmentation transforms for classification tasks.

This function generates a set of image transformations suitable for training classification models. It includes options for resizing, flipping, color jittering, auto augmentation, and random erasing.

Parameters:

Name Type Description Default
size int

Target size for the image after transformations.

224
mean tuple

Mean values for normalization, one per channel.

DEFAULT_MEAN
std tuple

Standard deviation values for normalization, one per channel.

DEFAULT_STD
scale tuple | None

Range of size of the origin size cropped.

None
ratio tuple | None

Range of aspect ratio of the origin aspect ratio cropped.

None
hflip float

Probability of horizontal flip.

0.5
vflip float

Probability of vertical flip.

0.0
auto_augment str | None

Auto augmentation policy. Can be 'randaugment', 'augmix', 'autoaugment' or None.

None
hsv_h float

Image HSV-Hue augmentation factor.

0.015
hsv_s float

Image HSV-Saturation augmentation factor.

0.4
hsv_v float

Image HSV-Value augmentation factor.

0.4
force_color_jitter bool

Whether to apply color jitter even if auto augment is enabled.

False
erasing float

Probability of random erasing.

0.0
interpolation str

Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'.

'BILINEAR'

Returns:

Type Description
Compose

A composition of image augmentation transforms.

Examples:

>>> transforms = classify_augmentations(size=224, auto_augment="randaugment")
>>> augmented_image = transforms(original_image)
Source code in ultralytics/data/augment.py
def classify_augmentations(
    size=224,
    mean=DEFAULT_MEAN,
    std=DEFAULT_STD,
    scale=None,
    ratio=None,
    hflip=0.5,
    vflip=0.0,
    auto_augment=None,
    hsv_h=0.015,  # image HSV-Hue augmentation (fraction)
    hsv_s=0.4,  # image HSV-Saturation augmentation (fraction)
    hsv_v=0.4,  # image HSV-Value augmentation (fraction)
    force_color_jitter=False,
    erasing=0.0,
    interpolation="BILINEAR",
):
    """
    Creates a composition of image augmentation transforms for classification tasks.

    This function generates a set of image transformations suitable for training classification models. It includes
    options for resizing, flipping, color jittering, auto augmentation, and random erasing.

    Args:
        size (int): Target size for the image after transformations.
        mean (tuple): Mean values for normalization, one per channel.
        std (tuple): Standard deviation values for normalization, one per channel.
        scale (tuple | None): Range of size of the origin size cropped.
        ratio (tuple | None): Range of aspect ratio of the origin aspect ratio cropped.
        hflip (float): Probability of horizontal flip.
        vflip (float): Probability of vertical flip.
        auto_augment (str | None): Auto augmentation policy. Can be 'randaugment', 'augmix', 'autoaugment' or None.
        hsv_h (float): Image HSV-Hue augmentation factor.
        hsv_s (float): Image HSV-Saturation augmentation factor.
        hsv_v (float): Image HSV-Value augmentation factor.
        force_color_jitter (bool): Whether to apply color jitter even if auto augment is enabled.
        erasing (float): Probability of random erasing.
        interpolation (str): Interpolation method of either 'NEAREST', 'BILINEAR' or 'BICUBIC'.

    Returns:
        (torchvision.transforms.Compose): A composition of image augmentation transforms.

    Examples:
        >>> transforms = classify_augmentations(size=224, auto_augment="randaugment")
        >>> augmented_image = transforms(original_image)
    """
    # Transforms to apply if Albumentations not installed
    import torchvision.transforms as T  # scope for faster 'import ultralytics'

    if not isinstance(size, int):
        raise TypeError(f"classify_transforms() size {size} must be integer, not (list, tuple)")
    scale = tuple(scale or (0.08, 1.0))  # default imagenet scale range
    ratio = tuple(ratio or (3.0 / 4.0, 4.0 / 3.0))  # default imagenet ratio range
    interpolation = getattr(T.InterpolationMode, interpolation)
    primary_tfl = [T.RandomResizedCrop(size, scale=scale, ratio=ratio, interpolation=interpolation)]
    if hflip > 0.0:
        primary_tfl.append(T.RandomHorizontalFlip(p=hflip))
    if vflip > 0.0:
        primary_tfl.append(T.RandomVerticalFlip(p=vflip))

    secondary_tfl = []
    disable_color_jitter = False
    if auto_augment:
        assert isinstance(auto_augment, str), f"Provided argument should be string, but got type {type(auto_augment)}"
        # color jitter is typically disabled if AA/RA on,
        # this allows override without breaking old hparm cfgs
        disable_color_jitter = not force_color_jitter

        if auto_augment == "randaugment":
            if TORCHVISION_0_11:
                secondary_tfl.append(T.RandAugment(interpolation=interpolation))
            else:
                LOGGER.warning('"auto_augment=randaugment" requires torchvision >= 0.11.0. Disabling it.')

        elif auto_augment == "augmix":
            if TORCHVISION_0_13:
                secondary_tfl.append(T.AugMix(interpolation=interpolation))
            else:
                LOGGER.warning('"auto_augment=augmix" requires torchvision >= 0.13.0. Disabling it.')

        elif auto_augment == "autoaugment":
            if TORCHVISION_0_10:
                secondary_tfl.append(T.AutoAugment(interpolation=interpolation))
            else:
                LOGGER.warning('"auto_augment=autoaugment" requires torchvision >= 0.10.0. Disabling it.')

        else:
            raise ValueError(
                f'Invalid auto_augment policy: {auto_augment}. Should be one of "randaugment", '
                f'"augmix", "autoaugment" or None'
            )

    if not disable_color_jitter:
        secondary_tfl.append(T.ColorJitter(brightness=hsv_v, contrast=hsv_v, saturation=hsv_s, hue=hsv_h))

    final_tfl = [
        T.ToTensor(),
        T.Normalize(mean=torch.tensor(mean), std=torch.tensor(std)),
        T.RandomErasing(p=erasing, inplace=True),
    ]

    return T.Compose(primary_tfl + secondary_tfl + final_tfl)



📅 Created 1 year ago ✏️ Updated 3 months ago