Consulta los Documentos de Detección para ver ejemplos de uso con estos modelos entrenados en Open Image V7, que incluyen 600 clases preentrenadas.
Modelo | tamaño (píxeles) | mAPval 50-95 | Velocidad CPU ONNX (ms) | Velocidad A100 TensorRT (ms) | parámetros (M) | FLOP (B) |
---|---|---|---|---|---|---|
YOLOv8n | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
YOLOv8s | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
YOLOv8m | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
YOLOv8l | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
YOLOv8x | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
Consulta Segmentation Docs para ver ejemplos de uso con estos modelos entrenados en COCO, que incluyen 80 clases preentrenadas.
Modelo | tamaño (píxeles) | mAPbox 50-95 | mAPmask 50-95 | Velocidad CPU ONNX (ms) | Velocidad A100 TensorRT (ms) | parámetros (M) | FLOP (B) |
---|---|---|---|---|---|---|---|
YOLOv8n-seg | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
YOLOv8s-seg | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
YOLOv8m-seg | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
YOLOv8l-seg | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
YOLOv8x-seg | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
Consulta los Documentos de Clasificación para ver ejemplos de uso con estos modelos entrenados en ImageNet, que incluyen 1000 clases preentrenadas.
Modelo | tamaño (píxeles) | acc top1 | acc top5 | Velocidad CPU ONNX (ms) | Velocidad A100 TensorRT (ms) | parámetros (M) | FLOP (B) a 640 |
---|---|---|---|---|---|---|---|
YOLOv8n-cls | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
YOLOv8s-cls | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
YOLOv8m-cls | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
YOLOv8l-cls | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
YOLOv8x-cls | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
Consulta la documentación sobre estimación de poses para ver ejemplos de uso con estos modelos entrenados en COCO, que incluyen 1 clase preentrenada, "persona".
Modelo | tamaño (píxeles) | mAPpose 50-95 | mAPpose 50 | Velocidad CPU ONNX (ms) | Velocidad A100 TensorRT (ms) | parámetros (M) | FLOP (B) |
---|---|---|---|---|---|---|---|
YOLOv8n-pose | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
YOLOv8s-pose | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
YOLOv8m-pose | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
YOLOv8l-pose | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
YOLOv8x-pose | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
YOLOv8x-pose-p6 | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
Consulta los Documentos de Detección Orientada para ver ejemplos de uso con estos modelos entrenados en DOTAv1, que incluyen 15 clases preentrenadas.
Modelo | tamaño (píxeles) | mAPtest 50 | Velocidad CPU ONNX (ms) | Velocidad A100 TensorRT (ms) | parámetros (M) | FLOP (B) |
---|---|---|---|---|---|---|
YOLOv8n-obb | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
YOLOv8s-obb | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
YOLOv8m-obb | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
YOLOv8l-obb | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
YOLOv8x-obb | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
Este ejemplo proporciona ejemplos sencillos de entrenamiento e inferencia de YOLOv8 . Para obtener documentación completa sobre estos y otros modos, consulta las páginas de documentación Predecir, Entrenar, Val y Exportar.
Ten en cuenta que el ejemplo siguiente es para los modelos YOLOv8 Detectar para la detección de objetos. Para otras tareas compatibles, consulta los documentos Segmentar, Clasificar, OBB y Pose.
Ejemplo
PyTorch preentrenado *.pt
modelos, así como la configuración *.yaml
pueden pasarse a la función YOLO()
para crear una instancia del modelo en python:
from ultralytics import YOLO
# Load a COCO-pretrained YOLOv8n model
model = YOLO("yolov8n.pt")
# Display model information (optional)
model.info()
# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
# Run inference with the YOLOv8n model on the 'bus.jpg' image
results = model("path/to/bus.jpg")
CLI para ejecutar directamente los modelos:
Ultralytics YOLOv8 Publicación
Ultralytics no ha publicado un documento de investigación formal para YOLOv8 debido a la rápida evolución de los modelos. Nos centramos en hacer avanzar la tecnología y facilitar su uso, en lugar de producir documentación estática. Para obtener la información más actualizada sobre la arquitectura, las características y el uso de YOLO , consulta nuestro repositorio GitHub y la documentación.
Si utilizas el modelo YOLOv8 o cualquier otro software de este repositorio en tu trabajo, por favor, cítalo utilizando el siguiente formato:
Ten en cuenta que el DOI está pendiente y se añadirá a la cita cuando esté disponible. Los modelos YOLOv8 se facilitan con las licencias AGPL-3.0 y Enterprise.
YOLOv8 es la última iteración de la serie Ultralytics YOLO , diseñada para mejorar el rendimiento de la detección de objetos en tiempo real con funciones avanzadas. A diferencia de las versiones anteriores, YOLOv8 incorpora un cabezal dividido sin anclajes Ultralytics , arquitecturas de columna vertebral y cuello de última generación, y ofrece una relación precisión-velocidad optimizada, por lo que resulta ideal para diversas aplicaciones. Para más detalles, consulta las secciones Visión general y Características principales.
YOLOv8 admite una amplia gama de tareas de visión por ordenador, como la detección de objetos, la segmentación de instancias, la detección de poses/puntos clave, la detección de objetos orientados y la clasificación. Cada variante del modelo está optimizada para su tarea específica y es compatible con diversos modos operativos como Inferencia, Validación, Entrenamiento y Exportación. Consulta la sección Tareas y modos compatibles para obtener más información.
YOLOv8 alcanzan un rendimiento puntero en varios conjuntos de datos de evaluación comparativa. Por ejemplo, el modelo YOLOv8n alcanza una mAP (Precisión Media Media) de 37,3 en el conjunto de datos COCO y una velocidad de 0,99 ms en A100 TensorRT. Puedes encontrar métricas de rendimiento detalladas para cada variante del modelo en diferentes tareas y conjuntos de datos en la sección Métricas de rendimiento.
El entrenamiento de un modelo YOLOv8 puede realizarse utilizando Python o CLI. A continuación se muestran ejemplos de entrenamiento de un modelo utilizando un modelo YOLOv8 preentrenado con COCO en el conjunto de datos COCO8 durante 100 épocas:
Ejemplo
Para más detalles, visita la documentación sobre Formación.
Sí, los modelos YOLOv8 pueden someterse a pruebas de rendimiento en términos de velocidad y precisión en varios formatos de exportación. Puedes utilizar PyTorch, ONNX, TensorRT, y otros más para la evaluación comparativa. A continuación se muestran comandos de ejemplo para la evaluación comparativa utilizando Python y CLI:
Ejemplo
Para más información, consulta la sección Métricas de rendimiento.