Ensemble de données sur la faune africaine
Cet ensemble de données présente quatre classes d'animaux communs que l'on trouve généralement dans les réserves naturelles d'Afrique du Sud. Il comprend des images d'animaux sauvages africains tels que le buffle, l'éléphant, le rhinocéros et le zèbre, et fournit des indications précieuses sur leurs caractéristiques. Essentiel pour l'entraînement des algorithmes de vision par ordinateur, cet ensemble de données aide à identifier les animaux dans divers habitats, des zoos aux forêts, et soutient la recherche sur la faune.
Regarde : Détection des animaux sauvages d'Afrique à l'aide de Ultralytics YOLOv8
Structure de l'ensemble de données
L'ensemble de données de détection d'objets de la faune africaine est divisé en trois sous-ensembles :
- Ensemble d'entraînement: Contient 1052 images, chacune avec les annotations correspondantes.
- Ensemble de validation: Comprend 225 images, chacune avec des annotations appariées.
- Ensemble de test: Comprend 227 images, chacune avec des annotations appariées.
Applications
Cet ensemble de données peut être appliqué à diverses tâches de vision par ordinateur, telles que la détection et le suivi d'objets, et la recherche. Plus précisément, il peut être utilisé pour former et évaluer des modèles permettant d'identifier des objets de la faune africaine dans des images, ce qui peut avoir des applications dans la conservation de la faune, la recherche écologique et les efforts de surveillance dans les réserves naturelles et les zones protégées. En outre, il peut constituer une ressource précieuse à des fins éducatives, permettant aux étudiants et aux chercheurs d'étudier et de comprendre les caractéristiques et les comportements de différentes espèces animales.
Jeu de données YAML
Un fichier YAML (Yet Another Markup Language) définit la configuration du jeu de données, y compris les chemins, les classes et d'autres détails pertinents. Pour le jeu de données sur la faune africaine, le fichier african-wildlife.yaml
Le fichier se trouve à l'adresse suivante https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/african-wildlife.yaml.
ultralytics/cfg/datasets/african-wildlife.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# African-wildlife dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/african-wildlife/
# Example usage: yolo train data=african-wildlife.yaml
# parent
# ├── ultralytics
# └── datasets
# └── african-wildlife ← downloads here (100 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/african-wildlife # dataset root dir
train: train/images # train images (relative to 'path') 1052 images
val: valid/images # val images (relative to 'path') 225 images
test: test/images # test images (relative to 'path') 227 images
# Classes
names:
0: buffalo
1: elephant
2: rhino
3: zebra
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/african-wildlife.zip
Utilisation
Pour entraîner un modèle YOLOv8n sur l'ensemble de données de la faune africaine pour 100 époques avec une taille d'image de 640, utilise les exemples de code fournis. Pour obtenir une liste complète des paramètres disponibles, reporte-toi à la page Formation du modèle.
Exemple de train
Exemple de déduction
Exemples d'images et d'annotations
L'ensemble de données sur la faune africaine comprend une grande variété d'images présentant diverses espèces animales et leurs habitats naturels. Tu trouveras ci-dessous des exemples d'images tirées de l'ensemble de données, chacune accompagnée des annotations correspondantes.
- Image mosaïque: Nous présentons ici un lot d'entraînement composé d'images de données mosaïquées. La mosaïque, une technique de formation, combine plusieurs images en une seule, enrichissant ainsi la diversité du lot. Cette méthode permet d'améliorer la capacité du modèle à se généraliser en fonction de la taille des objets, des rapports d'aspect et des contextes.
Cet exemple illustre la variété et la complexité des images de l'ensemble de données sur la faune africaine, soulignant les avantages d'inclure le mosaïquage pendant le processus de formation.
Citations et remerciements
Le jeu de données a été publié sous la licenceAGPL-3.0 .
FAQ
Qu'est-ce que la base de données sur la faune africaine et comment peut-elle être utilisée dans les projets de vision par ordinateur ?
L'ensemble de données sur la faune africaine comprend des images de quatre espèces animales courantes que l'on trouve dans les réserves naturelles d'Afrique du Sud : le buffle, l'éléphant, le rhinocéros et le zèbre. Il s'agit d'une ressource précieuse pour l'entraînement des algorithmes de vision artificielle à la détection d'objets et à l'identification des animaux. L'ensemble de données soutient diverses tâches telles que le suivi d'objets, la recherche et les efforts de conservation. Pour plus d'informations sur sa structure et ses applications, reporte-toi à la section Structure du jeu de données et Applications du jeu de données.
Comment entraîner un modèle YOLOv8 à l'aide de l'ensemble de données sur la faune africaine ?
Tu peux entraîner un modèle YOLOv8 sur l'ensemble de données de la faune africaine en utilisant la fonction african-wildlife.yaml
fichier de configuration. Tu trouveras ci-dessous un exemple de formation du modèle YOLOv8n pour 100 époques avec une taille d'image de 640 :
Exemple
Pour les paramètres et options de formation supplémentaires, reporte-toi à la documentation sur la formation.
Où puis-je trouver le fichier de configuration YAML pour le jeu de données sur la faune africaine ?
Le fichier de configuration YAML pour le jeu de données sur la faune africaine, nommé african-wildlife.yaml
Le site Web de l'association est disponible à l'adresse suivante ce lien GitHub. Ce fichier définit la configuration du jeu de données, y compris les chemins, les classes et d'autres détails cruciaux pour la formation des modèles d'apprentissage automatique. Voir le fichier Jeu de données YAML pour plus de détails.
Puis-je voir des exemples d'images et d'annotations de l'ensemble de données sur la faune africaine ?
Oui, l'ensemble de données sur la faune africaine comprend une grande variété d'images présentant diverses espèces animales dans leur habitat naturel. Tu peux voir des exemples d'images et leurs annotations correspondantes dans la section Exemples d'images et d'annotations. Cette section illustre également l'utilisation de la technique de mosaïquage pour combiner plusieurs images en une seule afin d'enrichir la diversité des lots et d'améliorer la capacité de généralisation du modèle.
Comment le jeu de données sur la faune africaine peut-il être utilisé pour soutenir la conservation et la recherche sur la faune ?
Le jeu de données sur la faune africaine est idéal pour soutenir la conservation et la recherche sur la faune en permettant la formation et l'évaluation de modèles permettant d'identifier la faune africaine dans différents habitats. Ces modèles peuvent aider à surveiller les populations animales, à étudier leur comportement et à identifier les besoins en matière de conservation. De plus, l'ensemble des données peut être utilisé à des fins éducatives, en aidant les étudiants et les chercheurs à comprendre les caractéristiques et les comportements des différentes espèces animales. Tu trouveras plus de détails dans la section Applications.