Skip to content

Ensemble de données COCO8-Pose

Introduction

Ultralytics COCO8-Pose is a small, but versatile pose detection dataset composed of the first 8 images of the COCO train 2017 set, 4 for training and 4 for validation. This dataset is ideal for testing and debugging object detection models, or for experimenting with new detection approaches. With 8 images, it is small enough to be easily manageable, yet diverse enough to test training pipelines for errors and act as a sanity check before training larger datasets.

This dataset is intended for use with Ultralytics HUB and YOLO11.

Jeu de données YAML

Un fichier YAML (Yet Another Markup Language) est utilisé pour définir la configuration du jeu de données. Il contient des informations sur les chemins d'accès au jeu de données, les classes et d'autres informations pertinentes. Dans le cas du jeu de données COCO8-Pose, le fichier YAML est un fichier de configuration. coco8-pose.yaml est maintenu à https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco8-pose.yaml.

ultralytics/cfg/datasets/coco8-pose.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO8-pose dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/coco8-pose/
# Example usage: yolo train data=coco8-pose.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco8-pose  ← downloads here (1 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8-pose # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)

# Keypoints
kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]

# Classes
names:
  0: person

# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8-pose.zip

Utilisation

To train a YOLO11n-pose model on the COCO8-Pose dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.

Exemple de train

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco8-pose.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo pose train data=coco8-pose.yaml model=yolo11n-pose.pt epochs=100 imgsz=640

Exemples d'images et d'annotations

Voici quelques exemples d'images tirées de l'ensemble de données COCO8-Pose, ainsi que les annotations correspondantes :

Image de l'échantillon du jeu de données

  • Image mosaïque: Cette image montre un lot d'entraînement composé d'images de données mosaïquées. La mosaïque est une technique utilisée pendant la formation qui combine plusieurs images en une seule afin d'augmenter la variété d'objets et de scènes dans chaque lot de formation. Cela permet d'améliorer la capacité du modèle à s'adapter à différentes tailles d'objets, à différents rapports d'aspect et à différents contextes.

L'exemple montre la variété et la complexité des images de l'ensemble de données COCO8-Pose et les avantages de l'utilisation du mosaïquage pendant le processus de formation.

Citations et remerciements

Si tu utilises l'ensemble de données COCO dans tes travaux de recherche ou de développement, cite l'article suivant :

@misc{lin2015microsoft,
      title={Microsoft COCO: Common Objects in Context},
      author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
      year={2015},
      eprint={1405.0312},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

We would like to acknowledge the COCO Consortium for creating and maintaining this valuable resource for the computer vision community. For more information about the COCO dataset and its creators, visit the COCO dataset website.

FAQ

What is the COCO8-Pose dataset, and how is it used with Ultralytics YOLO11?

The COCO8-Pose dataset is a small, versatile pose detection dataset that includes the first 8 images from the COCO train 2017 set, with 4 images for training and 4 for validation. It's designed for testing and debugging object detection models and experimenting with new detection approaches. This dataset is ideal for quick experiments with Ultralytics YOLO11. For more details on dataset configuration, check out the dataset YAML file here.

How do I train a YOLO11 model using the COCO8-Pose dataset in Ultralytics?

To train a YOLO11n-pose model on the COCO8-Pose dataset for 100 epochs with an image size of 640, follow these examples:

Exemple de train

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")

# Train the model
results = model.train(data="coco8-pose.yaml", epochs=100, imgsz=640)
yolo pose train data=coco8-pose.yaml model=yolo11n-pose.pt epochs=100 imgsz=640

Pour obtenir une liste complète des arguments de formation, reporte-toi à la page de la formation au modèle.

Quels sont les avantages de l'utilisation de l'ensemble de données COCO8-Pose ?

L'ensemble de données COCO8-Pose offre plusieurs avantages :

  • Taille compacte: Avec seulement 8 images, il est facile à gérer et parfait pour les expériences rapides.
  • Données diverses: Malgré sa petite taille, il comprend une variété de scènes, utiles pour des tests approfondis du pipeline.
  • Débogage des erreurs: Idéal pour identifier les erreurs d'entraînement et effectuer des vérifications de bon sens avant de passer à l'échelle sur des ensembles de données plus importants.

Pour en savoir plus sur ses caractéristiques et son utilisation, consulte la section Introduction aux jeux de données.

How does mosaicing benefit the YOLO11 training process using the COCO8-Pose dataset?

La mosaïque, démontrée dans les exemples d'images de l'ensemble de données COCO8-Pose, combine plusieurs images en une seule, augmentant ainsi la variété d'objets et de scènes dans chaque lot d'entraînement. Cette technique permet d'améliorer la capacité du modèle à se généraliser en fonction de la taille des objets, des rapports d'aspect et des contextes, ce qui améliore en fin de compte les performances du modèle. Voir la section Exemples d'images et d'annotations pour des exemples d'images.

Où puis-je trouver le fichier YAML du jeu de données COCO8-Pose et comment puis-je l'utiliser ?

The COCO8-Pose dataset YAML file can be found here. This file defines the dataset configuration, including paths, classes, and other relevant information. Use this file with the YOLO11 training scripts as mentioned in the Train Example section.

Pour plus de FAQ et une documentation détaillée, visite le site Ultralytics Documentation.

📅 Created 1 year ago ✏️ Updated 1 month ago

Commentaires