Skip to content

Roboflow Ensemble de données de segmentation Universe Carparts

L'ensemble de données de segmentation Roboflow Carparts Segmentation Dataset est une collection d'images et de vidéos conçue pour les applications de vision par ordinateur, qui se concentre spécifiquement sur les tâches de segmentation liées aux pièces de voiture. Cet ensemble de données fournit un ensemble diversifié de visuels capturés à partir de multiples perspectives, offrant des exemples annotés précieux pour la formation et le test des modèles de segmentation.

Que tu travailles sur la recherche automobile, que tu développes des solutions d'IA pour l'entretien des véhicules ou que tu explores les applications de vision par ordinateur, l'ensemble de données de segmentation Carparts sert de ressource précieuse pour améliorer la précision et l'efficacité de tes projets.

Structure de l'ensemble de données

La distribution des données au sein de l'ensemble de données de segmentation Carparts est organisée comme indiqué ci-dessous :

  • Ensemble d'entraînement: Comprend 3156 images, chacune accompagnée de ses annotations correspondantes.
  • Ensemble de test: Comprend 276 images, chacune étant associée à ses annotations respectives.
  • Ensemble de validation: Se compose de 401 images, chacune ayant des annotations correspondantes.

Applications

La segmentation Carparts trouve des applications dans le contrôle qualité automobile, la réparation automobile, le catalogage e-commerce, la surveillance du trafic, les véhicules autonomes, le traitement des assurances, le recyclage et les initiatives de villes intelligentes. Elle rationalise les processus en identifiant et en catégorisant avec précision les différents composants des véhicules, contribuant ainsi à l'efficacité et à l'automatisation dans diverses industries.

Jeu de données YAML

Un fichier YAML (Yet Another Markup Language) est utilisé pour définir la configuration du jeu de données. Il contient des informations sur les chemins d'accès au dataset, les classes et d'autres informations pertinentes. Dans le cas du jeu de données Package Segmentation, le fichier YAML est un fichier de configuration. carparts-seg.yaml est maintenu à https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/carparts-seg.yaml.

ultralytics/cfg/datasets/carparts-seg.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# Carparts-seg dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/carparts-seg/
# Example usage: yolo train data=carparts-seg.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── carparts-seg  ← downloads here (132 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/carparts-seg # dataset root dir
train: train/images # train images (relative to 'path') 3516 images
val: valid/images # val images (relative to 'path') 276 images
test: test/images # test images (relative to 'path') 401 images

# Classes
names:
  0: back_bumper
  1: back_door
  2: back_glass
  3: back_left_door
  4: back_left_light
  5: back_light
  6: back_right_door
  7: back_right_light
  8: front_bumper
  9: front_door
  10: front_glass
  11: front_left_door
  12: front_left_light
  13: front_light
  14: front_right_door
  15: front_right_light
  16: hood
  17: left_mirror
  18: object
  19: right_mirror
  20: tailgate
  21: trunk
  22: wheel

# Download script/URL (optional)
download: https://ultralytics.com/assets/carparts-seg.zip

Utilisation

Pour entraîner le modèle Ultralytics YOLOv8n sur l'ensemble de données Carparts Segmentation pour 100 époques avec une taille d'image de 640, tu peux utiliser les extraits de code suivants. Pour obtenir une liste complète des arguments disponibles, reporte-toi à la page Formation du modèle.

Exemple de train

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-seg.pt')  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data='carparts-seg.yaml', epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo segment train data=carparts-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640

Exemples de données et d'annotations

L'ensemble de données Carparts Segmentation comprend une gamme variée d'images et de vidéos prises sous différentes perspectives. Tu trouveras ci-dessous des exemples de données tirées de l'ensemble de données ainsi que les annotations correspondantes :

Image de l'échantillon du jeu de données

  • Cette image illustre la segmentation d'objets dans un échantillon, avec des boîtes de délimitation annotées et des masques entourant les objets identifiés. L'ensemble de données se compose d'un ensemble varié d'images capturées dans des lieux, des environnements et des densités divers, ce qui constitue une ressource complète pour la création de modèles spécifiques à cette tâche.
  • Ce cas met en évidence la diversité et la complexité inhérentes à l'ensemble de données, soulignant le rôle crucial des données de haute qualité dans les tâches de vision par ordinateur, en particulier dans le domaine de la segmentation des pièces de voiture.

Citations et remerciements

Si tu intègres le jeu de données Carparts Segmentation dans tes projets de recherche ou de développement, fais référence au document suivant :

   @misc{ car-seg-un1pm_dataset,
        title = { car-seg Dataset },
        type = { Open Source Dataset },
        author = { Gianmarco Russo },
        howpublished = { \url{ https://universe.roboflow.com/gianmarco-russo-vt9xr/car-seg-un1pm } },
        url = { https://universe.roboflow.com/gianmarco-russo-vt9xr/car-seg-un1pm },
        journal = { Roboflow Universe },
        publisher = { Roboflow },
        year = { 2023 },
        month = { nov },
        note = { visited on 2024-01-24 },
    }

Nous remercions l'équipe de Roboflow pour son dévouement dans le développement et la gestion de l'ensemble de données Carparts Segmentation, une ressource précieuse pour l'entretien des véhicules et les projets de recherche. Pour plus de détails sur l'ensemble de données Carparts Segmentation et ses créateurs, visite la page de l'ensemble de données CarParts Segmentation.



Créé le 2024-01-25, Mis à jour le 2024-02-08
Auteurs : chr043416@gmail.com (1), glenn-jocher (1)

Commentaires