Ensemble de données sur les tumeurs cérébrales
Un ensemble de données de détection de tumeurs cérébrales est constitué d'images médicales provenant d'IRM ou de tomodensitogrammes, contenant des informations sur la présence, l'emplacement et les caractéristiques des tumeurs cérébrales. Cet ensemble de données est essentiel pour former des algorithmes de vision artificielle afin d'automatiser l'identification des tumeurs cérébrales, ce qui facilite le diagnostic précoce et la planification du traitement.
Regarde : Détection des tumeurs cérébrales à l'aide de Ultralytics HUB
Structure de l'ensemble de données
L'ensemble de données sur les tumeurs cérébrales est divisé en deux sous-ensembles :
- Ensemble d'entraînement: Composé de 893 images, chacune accompagnée des annotations correspondantes.
- Ensemble de test: Comprend 223 images, avec des annotations appariées pour chacune d'entre elles.
Applications
L'application de la détection des tumeurs cérébrales à l'aide de la vision par ordinateur permet un diagnostic précoce, la planification du traitement et le suivi de la progression de la tumeur. En analysant les données d'imagerie médicale telles que l'IRM ou la tomodensitométrie, les systèmes de vision par ordinateur aident à identifier avec précision les tumeurs cérébrales, ce qui favorise une intervention médicale opportune et des stratégies de traitement personnalisées.
Jeu de données YAML
Un fichier YAML (Yet Another Markup Language) est utilisé pour définir la configuration du jeu de données. Il contient des informations sur les chemins d'accès au jeu de données, les classes et d'autres informations pertinentes. Dans le cas de l'ensemble de données sur les tumeurs cérébrales, le fichier YAML contient des informations sur les chemins d'accès, les classes et d'autres informations pertinentes. brain-tumor.yaml
est maintenu à https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/brain-tumor.yaml.
ultralytics/cfg/datasets/brain-tumor.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Brain-tumor dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/brain-tumor/
# Example usage: yolo train data=brain-tumor.yaml
# parent
# ├── ultralytics
# └── datasets
# └── brain-tumor ← downloads here (4.05 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/brain-tumor # dataset root dir
train: train/images # train images (relative to 'path') 893 images
val: valid/images # val images (relative to 'path') 223 images
test: # test images (relative to 'path')
# Classes
names:
0: negative
1: positive
# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/brain-tumor.zip
Utilisation
Pour entraîner un modèle YOLOv8n sur l'ensemble de données des tumeurs cérébrales pendant 100 époques avec une taille d'image de 640, utilise les extraits de code fournis. Pour obtenir une liste détaillée des arguments disponibles, consulte la page Formation du modèle.
Exemple de train
Exemple de déduction
Exemples d'images et d'annotations
L'ensemble de données sur les tumeurs cérébrales comprend un large éventail d'images présentant diverses catégories d'objets et des scènes complexes. Tu trouveras ci-dessous des exemples d'images tirées de l'ensemble de données, accompagnées de leurs annotations respectives.
- Image mosaïque: L'image affichée ici est un lot de formation comprenant des images de données mosaïquées. La mosaïque, une technique d'apprentissage, regroupe plusieurs images en une seule, améliorant ainsi la diversité du lot. Cette approche permet d'améliorer la capacité du modèle à se généraliser en fonction de la taille des objets, des rapports d'aspect et des contextes.
Cet exemple met en évidence la diversité et la complexité des images de l'ensemble de données sur les tumeurs cérébrales, soulignant les avantages de l'incorporation du mosaïquage pendant la phase de formation.
Citations et remerciements
Le jeu de données a été publié sous la licenceAGPL-3.0 .
FAQ
Quelle est la structure de l'ensemble de données sur les tumeurs cérébrales disponible dans la documentation Ultralytics ?
L'ensemble de données sur les tumeurs cérébrales est divisé en deux sous-ensembles : l'ensemble d'apprentissage se compose de 893 images avec des annotations correspondantes, tandis que l'ensemble de test comprend 223 images avec des annotations appariées. Cette division structurée permet de développer des modèles de vision artificielle robustes et précis pour détecter les tumeurs cérébrales. Pour plus d'informations sur la structure de l'ensemble de données, visite la section Structure de l'ensemble de données.
Comment puis-je entraîner un modèle YOLOv8 sur l'ensemble de données de tumeurs cérébrales à l'aide de Ultralytics?
Tu peux entraîner un modèle YOLOv8 sur l'ensemble de données sur les tumeurs cérébrales pendant 100 époques avec une taille d'image de 640 px en utilisant les méthodes Python et CLI . Tu trouveras ci-dessous des exemples pour les deux méthodes :
Exemple de train
Pour une liste détaillée des arguments disponibles, reporte-toi à la page Formation.
Quels sont les avantages de l'utilisation de l'ensemble de données sur les tumeurs cérébrales pour l'IA dans le domaine de la santé ?
L'utilisation de l'ensemble de données sur les tumeurs cérébrales dans les projets d'IA permet un diagnostic précoce et une planification du traitement des tumeurs cérébrales. Elle aide à automatiser l'identification des tumeurs cérébrales par le biais de la vision par ordinateur, à faciliter des interventions médicales précises et opportunes, et à soutenir des stratégies de traitement personnalisées. Cette application présente un potentiel important en termes d'amélioration des résultats pour les patients et d'efficacité médicale.
Comment puis-je effectuer une inférence à l'aide d'un modèle YOLOv8 affiné sur l'ensemble des données relatives aux tumeurs cérébrales ?
L'inférence à l'aide d'un modèle YOLOv8 affiné peut être effectuée avec les approches Python ou CLI . Voici des exemples :
Exemple de déduction
Où puis-je trouver la configuration YAML pour l'ensemble de données sur les tumeurs cérébrales ?
Le fichier de configuration YAML pour l'ensemble de données sur les tumeurs cérébrales se trouve à l'adresse brain-tumor.yaml. Ce fichier comprend des chemins, des classes et des informations pertinentes supplémentaires nécessaires à la formation et à l'évaluation des modèles sur cet ensemble de données.