Ensemble de données COCO
L'ensemble de données COCO (Common Objects in Context) est un ensemble de données à grande échelle pour la détection, la segmentation et le sous-titrage d'objets. Il est conçu pour encourager la recherche sur une grande variété de catégories d'objets et est couramment utilisé pour évaluer les modèles de vision par ordinateur. Il s'agit d'un ensemble de données essentiel pour les chercheurs et les développeurs qui travaillent sur la détection d'objets, la segmentation et les tâches d'estimation de la pose.
Regarder : Ultralytics Aperçu de l'ensemble de données COCO
Modèles pré-entraînés COCO
Modèle | taille (pixels) |
mAPval 50-95 |
Vitesse CPU ONNX (ms) |
Vitesse T4 TensorRT10 (ms) |
params (M) |
FLOPs (B) |
---|---|---|---|---|---|---|
YOLO11n | 640 | 39.5 | 56.1 ± 0.8 | 1.5 ± 0.0 | 2.6 | 6.5 |
YOLO11s | 640 | 47.0 | 90.0 ± 1.2 | 2.5 ± 0.0 | 9.4 | 21.5 |
YOLO11m | 640 | 51.5 | 183.2 ± 2.0 | 4.7 ± 0.1 | 20.1 | 68.0 |
YOLO11l | 640 | 53.4 | 238.6 ± 1.4 | 6.2 ± 0.1 | 25.3 | 86.9 |
YOLO11x | 640 | 54.7 | 462.8 ± 6.7 | 11.3 ± 0.2 | 56.9 | 194.9 |
Caractéristiques principales
- COCO contient 330 000 images, dont 200 000 comportent des annotations pour la détection d'objets, la segmentation et les tâches de sous-titrage.
- L'ensemble de données comprend 80 catégories d'objets, dont des objets courants comme les voitures, les bicyclettes et les animaux, ainsi que des catégories plus spécifiques comme les parapluies, les sacs à main et les équipements sportifs.
- Les annotations comprennent les boîtes de délimitation des objets, les masques de segmentation et les légendes pour chaque image.
- COCO fournit des mesures d'évaluation standardisées telles que la précision moyenne (mAP) pour la détection d'objets et le rappel moyen (mAR) pour les tâches de segmentation, ce qui permet de comparer les performances des modèles.
Structure de l'ensemble de données
L'ensemble de données COCO est divisé en trois sous-ensembles :
- Train2017: Ce sous-ensemble contient 118 000 images pour l'entraînement des modèles de détection d'objets, de segmentation et de sous-titrage.
- Val2017: Ce sous-ensemble comprend 5K images utilisées à des fins de validation lors de l'apprentissage du modèle.
- Test2017: Ce sous-ensemble se compose de 20 000 images utilisées pour tester et évaluer les modèles formés. Les annotations de vérité terrain pour ce sous-ensemble ne sont pas accessibles au public, et les résultats sont soumis au serveur d'évaluation COCO pour l'évaluation des performances.
Applications
L'ensemble de données COCO est largement utilisé pour la formation et l'évaluation de modèles d'apprentissage profond dans la détection d'objets (tels que YOLO, Faster R-CNN et SSD), la segmentation d'instances (tels que Mask R-CNN) et la détection de points clés (tels que OpenPose). L'ensemble diversifié de catégories d'objets, le grand nombre d'images annotées et les mesures d'évaluation normalisées font de ce jeu de données une ressource essentielle pour les chercheurs et les praticiens de la vision par ordinateur.
Jeu de données YAML
Un fichier YAML (Yet Another Markup Language) est utilisé pour définir la configuration du jeu de données. Il contient des informations sur les chemins d'accès au jeu de données, les classes et d'autres informations pertinentes. Dans le cas du jeu de données COCO, le fichier coco.yaml
est conservé à l'adresse suivante https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml.
ultralytics/cfg/datasets/coco.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset https://cocodataset.org by Microsoft
# Documentation: https://docs.ultralytics.com/datasets/detect/coco/
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco ← downloads here (20.1 GB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco # dataset root dir
train: train2017.txt # train images (relative to 'path') 118287 images
val: val2017.txt # val images (relative to 'path') 5000 images
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: |
from ultralytics.utils.downloads import download
from pathlib import Path
# Download labels
segments = True # segment or box labels
dir = Path(yaml['path']) # dataset root dir
url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/'
urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
download(urls, dir=dir.parent)
# Download data
urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
download(urls, dir=dir / 'images', threads=3)
Utilisation
Pour entraîner un modèle YOLO11n sur l'ensemble de données COCO pendant 100 époques avec une taille d'image de 640, vous pouvez utiliser les extraits de code suivants. Pour une liste complète des arguments disponibles, reportez-vous à la page Entraînement du modèle.
Exemple de train
Exemples d'images et d'annotations
L'ensemble de données COCO contient un ensemble varié d'images avec diverses catégories d'objets et des scènes complexes. Voici quelques exemples d'images tirées de l'ensemble de données, ainsi que les annotations correspondantes :
- Image mosaïque: Cette image montre un lot d'entraînement composé d'images de données mosaïquées. La mosaïque est une technique utilisée pendant l'apprentissage qui combine plusieurs images en une seule afin d'augmenter la variété des objets et des scènes dans chaque lot d'apprentissage. Cela permet d'améliorer la capacité du modèle à s'adapter à différentes tailles d'objets, à différents rapports d'aspect et à différents contextes.
Cet exemple illustre la variété et la complexité des images de l'ensemble de données COCO et les avantages de l'utilisation du mosaïquage au cours du processus de formation.
Citations et remerciements
Si vous utilisez l'ensemble de données COCO dans vos travaux de recherche ou de développement, veuillez citer l'article suivant :
@misc{lin2015microsoft,
title={Microsoft COCO: Common Objects in Context},
author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollár},
year={2015},
eprint={1405.0312},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Nous tenons à remercier le Consortium COCO pour la création et la maintenance de cette ressource précieuse pour la communauté de la vision par ordinateur. Pour plus d'informations sur l'ensemble de données COCO et ses créateurs, visitez le site web de l'ensemble de données COCO.
FAQ
Qu'est-ce que l'ensemble de données COCO et pourquoi est-il important pour la vision par ordinateur ?
L'ensemble de données COCO (Common Objects in Context) est un ensemble de données à grande échelle utilisé pour la détection, la segmentation et le sous-titrage d'objets. Il contient 330 000 images avec des annotations détaillées pour 80 catégories d'objets, ce qui le rend essentiel pour l'évaluation comparative et l'entraînement des modèles de vision par ordinateur. Les chercheurs utilisent COCO en raison de la diversité de ses catégories et de ses mesures d'évaluation normalisées telles que la précision moyenne (mAP).
Comment puis-je entraîner un modèle YOLO à l'aide de l'ensemble de données COCO ?
Pour entraîner un modèle YOLO11 à l'aide de l'ensemble de données COCO, vous pouvez utiliser les extraits de code suivants :
Exemple de train
Reportez-vous à la page Formation pour plus de détails sur les arguments disponibles.
Quelles sont les principales caractéristiques de l'ensemble de données COCO ?
L'ensemble de données COCO comprend
- 330 000 images, dont 200 000 annotées pour la détection d'objets, la segmentation et le sous-titrage.
- 80 catégories d'objets allant d'articles courants comme les voitures et les animaux à des objets spécifiques comme les sacs à main et les équipements sportifs.
- Mesures d'évaluation normalisées pour la détection d'objets (mAP) et la segmentation (mean Average Recall, mAR).
- Technique de mosaïque dans les lots de formation afin d'améliorer la généralisation du modèle pour différentes tailles d'objets et différents contextes.
Où puis-je trouver des modèles pré-entraînés YOLO11 formés sur l'ensemble de données COCO ?
Les modèles pré-entraînés YOLO11 sur le jeu de données COCO peuvent être téléchargés à partir des liens fournis dans la documentation. Voici quelques exemples :
Ces modèles varient en taille, en mAP et en vitesse d'inférence, ce qui permet de répondre à différentes exigences en matière de performances et de ressources.
Comment l'ensemble de données COCO est-il structuré et comment puis-je l'utiliser ?
L'ensemble de données COCO est divisé en trois sous-ensembles :
- Train2017: 118K images pour la formation.
- Val2017: 5K images pour la validation pendant la formation.
- Test2017: 20K images pour l'évaluation comparative des modèles entraînés. Les résultats doivent être soumis au serveur d'évaluation COCO pour l'évaluation des performances.
Le fichier de configuration YAML de l'ensemble de données est disponible à l'adresse coco.yaml, qui définit les chemins, les classes et les détails de l'ensemble de données.