Skip to content

Ensemble de données Tiger-Pose

Introduction

Ultralytics présente l'ensemble de données Tiger-Pose, une collection polyvalente conçue pour les tâches d'estimation de la pose. Cet ensemble de données comprend 263 images provenant d'une vidéo YouTube, avec 210 images allouées à la formation et 53 à la validation. Il constitue une excellente ressource pour tester et dépanner les algorithmes d'estimation de la pose.

Malgré sa taille gérable de 210 images, l'ensemble de données tiger-pose offre de la diversité, ce qui le rend approprié pour évaluer les pipelines d'entraînement, identifier les erreurs potentielles et servir d'étape préliminaire précieuse avant de travailler avec des ensembles de données plus importants pour l'estimation de la pose.

This dataset is intended for use with Ultralytics HUB and YOLO11.



Regarde : Train YOLO11 Pose Model on Tiger-Pose Dataset Using Ultralytics HUB

Jeu de données YAML

Un fichier YAML (Yet Another Markup Language) sert à spécifier les détails de configuration d'un ensemble de données. Il englobe des données cruciales telles que les chemins d'accès aux fichiers, les définitions des classes et d'autres informations pertinentes. Plus précisément, pour le fichier tiger-pose.yaml tu peux vérifier Ultralytics Fichier de configuration de l'ensemble de données Tiger-Pose.

ultralytics/cfg/datasets/tiger-pose.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# Tiger Pose dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/pose/tiger-pose/
# Example usage: yolo train data=tiger-pose.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── tiger-pose  ← downloads here (75.3 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/tiger-pose # dataset root dir
train: train # train images (relative to 'path') 210 images
val: val # val images (relative to 'path') 53 images

# Keypoints
kpt_shape: [12, 2] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
flip_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

# Classes
names:
  0: tiger

# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/tiger-pose.zip

Utilisation

To train a YOLO11n-pose model on the Tiger-Pose dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model Training page.

Exemple de train

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="tiger-pose.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo task=pose mode=train data=tiger-pose.yaml model=yolo11n-pose.pt epochs=100 imgsz=640

Exemples d'images et d'annotations

Voici quelques exemples d'images tirées de l'ensemble de données Tiger-Pose, ainsi que les annotations correspondantes :

Image de l'échantillon du jeu de données

  • Image mosaïque: Cette image montre un lot d'entraînement composé d'images de données mosaïquées. La mosaïque est une technique utilisée pendant la formation qui combine plusieurs images en une seule afin d'augmenter la variété d'objets et de scènes dans chaque lot de formation. Cela permet d'améliorer la capacité du modèle à s'adapter à différentes tailles d'objets, à différents rapports d'aspect et à différents contextes.

L'exemple montre la variété et la complexité des images de l'ensemble de données Tiger-Pose et les avantages de l'utilisation du mosaïquage pendant le processus de formation.

Exemple de déduction

Exemple de déduction

from ultralytics import YOLO

# Load a model
model = YOLO("path/to/best.pt")  # load a tiger-pose trained model

# Run inference
results = model.predict(source="https://youtu.be/MIBAT6BGE6U", show=True)
# Run inference using a tiger-pose trained model
yolo task=pose mode=predict source="https://youtu.be/MIBAT6BGE6U" show=True model="path/to/best.pt"

Citations et remerciements

Le jeu de données a été publié sous la licenceAGPL-3.0 .

FAQ

À quoi sert l'ensemble de données Ultralytics Tiger-Pose ?

The Ultralytics Tiger-Pose dataset is designed for pose estimation tasks, consisting of 263 images sourced from a YouTube video. The dataset is divided into 210 training images and 53 validation images. It is particularly useful for testing, training, and refining pose estimation algorithms using Ultralytics HUB and YOLO11.

How do I train a YOLO11 model on the Tiger-Pose dataset?

To train a YOLO11n-pose model on the Tiger-Pose dataset for 100 epochs with an image size of 640, use the following code snippets. For more details, visit the Training page:

Exemple de train

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n-pose.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="tiger-pose.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo task=pose mode=train data=tiger-pose.yaml model=yolo11n-pose.pt epochs=100 imgsz=640

Quelles sont les configurations que le tiger-pose.yaml inclure dans le fichier ?

Le tiger-pose.yaml est utilisé pour spécifier les détails de configuration de l'ensemble de données Tiger-Pose. Il comprend des données cruciales telles que les chemins d'accès aux fichiers et les définitions des classes. Pour connaître la configuration exacte, tu peux consulter le fichier Ultralytics Fichier de configuration de l'ensemble de données Tiger-Pose.

How can I run inference using a YOLO11 model trained on the Tiger-Pose dataset?

To perform inference using a YOLO11 model trained on the Tiger-Pose dataset, you can use the following code snippets. For a detailed guide, visit the Prediction page:

Exemple de déduction

from ultralytics import YOLO

# Load a model
model = YOLO("path/to/best.pt")  # load a tiger-pose trained model

# Run inference
results = model.predict(source="https://youtu.be/MIBAT6BGE6U", show=True)
# Run inference using a tiger-pose trained model
yolo task=pose mode=predict source="https://youtu.be/MIBAT6BGE6U" show=True model="path/to/best.pt"

Quels sont les avantages de l'utilisation de l'ensemble de données Tiger-Pose pour l'estimation de la pose ?

The Tiger-Pose dataset, despite its manageable size of 210 images for training, provides a diverse collection of images that are ideal for testing pose estimation pipelines. The dataset helps identify potential errors and acts as a preliminary step before working with larger datasets. Additionally, the dataset supports the training and refinement of pose estimation algorithms using advanced tools like Ultralytics HUB and YOLO11, enhancing model performance and accuracy.


📅 Created 11 months ago ✏️ Updated 7 days ago

Commentaires